Archive of Applied Mechanics

, Volume 81, Issue 4, pp 503–511 | Cite as

Minimal models for squealing of railway block brakes

Original

Abstract

Block brakes have been used to brake railway vehicles for approximately 200 years. During the last 40 years, disk brakes have replaced the block brakes at passenger cars but block brakes are still used for all freight wagons. One problem of block brakes is that they show an enormous tendency to squeal. Although the block brake is a very common and old technical component, there exists almost no scientific work on its noise behavior regarding squeal. On the other hand, a lot of work has been done on the problem of disk brake squeal especially concerning the modeling of the excitation mechanism. The goal of this paper is to investigate whether and how models from disk brake squeal can be modified to model block brake squeal. The starting point of these investigations is a minimal model for an automotive disk brake introduced by von Wagner et al. (J Sound Vibration, 51(1–2):223–237, 2007) that is adapted to the block brake problem. It can be shown that such a simple converted model does not show any instability at all. A deeper analysis suggests that the reasons for squeal in block brakes could originate from in-plane vibrations of the brake disk or specific geometrical properties of the railway wheel. The self-excited vibrations explaining the squeal occur at relatively low rotational speeds far below the first critical rotor speed which has rarely been observed in rotor dynamics.

Keywords

Brake squeal Self-excited vibration Rotor dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker-Lindhorst, K.: Dissq disc supressing squeal, Quietschfreie Hochleistungsscheibenbremse. Leiser Verkehr, Lärmforschung im Forschungsprogramm Mobilität und Verkehr, Bundesministerium für Bildung und Forschung (2003)Google Scholar
  2. 2.
    Beier, M.: Disc supressing squeal (dissq); squealing free high performance disk brake. Euronoise Tampere (2006)Google Scholar
  3. 3.
    Bühler, S.: Eurosabot field measurement–methods and results. J. Accoust. Soc. Am. 105 (1999)Google Scholar
  4. 4.
    Ehlers, H.R.: Potenziale und Grenzen der Klotzbremse im Vergleich zur Scheibenbremse. ZEVrail Glasers Annalen, pp 126–617 (2002)Google Scholar
  5. 5.
    Gasch R., Nordmann R., Pfützner H.: Rotordynamik. Springer, Berlin (2002)Google Scholar
  6. 6.
    Hagedorn P.: Non-Linear Oscillations. Calendron Press, Oxford (1988)MATHGoogle Scholar
  7. 7.
    Hochlenert D., Spelsberg-Korspeter G., Hagedorn P.: Friction induced vibrations in moving continua and their application to brake squeal. Trans. ASME J. Appl. Mech. 74, 542–549 (2007)MATHCrossRefGoogle Scholar
  8. 8.
    Hoffmann N., Fischer M., Allgaier R., Gaul L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29, 197–205 (2002)MATHCrossRefGoogle Scholar
  9. 9.
    Ibrahim R.A.: Friction-induced vibration, chatter, squeal and chaos, part i: mechanics of contact and friction. ASME Appl. Mech. Rev. 47(7), 227–253 (1994)CrossRefGoogle Scholar
  10. 10.
    Karapetjan A.V.: The stability of nonconservative systems. Vestnik Moskovskogo Universiteta Serija 1, mathematika, mechanika 4(30), 109–113 (1975)MathSciNetGoogle Scholar
  11. 11.
    Kinkaid N.M., O’Reilly O.M., Papadopoulos P.: Automotive disc brake squeal. J. Sound Vibration 267, 105–166 (2003)CrossRefGoogle Scholar
  12. 12.
    Krettek O., Abdel U., Zobory I.: Modellierung der Klotzbremse. ZEV+DET Glas 1, 18 (1994)Google Scholar
  13. 13.
    Lakhadanov V.M.: On stabilization of potential systems. PMM 39(1), 53–58 (1975)MathSciNetGoogle Scholar
  14. 14.
    Lorang X., Foy-Margiocchi F., Nguyen Q., Gautier P.: TGV disc brake squeal. J. Sound Vibration 293, 735–746 (2006)CrossRefGoogle Scholar
  15. 15.
    Mottershead J.: Vibration- and friction-induced instability in disks. Shock Vibration Dig. 30(1), 14–31 (1998)CrossRefGoogle Scholar
  16. 16.
    Ouyang H., Mottershed J.E.: Dynamic instability of an elastic disk under the action of a rotating friction couple. J. Appl. Mech. 71, 753–758 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Ouyang H., Nack W., Yuan Y., Chen F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Vehicle Noise Vibration 1(3), 207–231 (2005)CrossRefGoogle Scholar
  18. 18.
    Shin K., Brennan M., Oh J., Harris C.: Analysis of disc brake noise using a two-degree-of-freedom model. J. Sound Vibration 254(5), 837–848 (2002)CrossRefGoogle Scholar
  19. 19.
    Spelsberg-Korspeter G.: Breaking of symmetries for stabilization of rotating continua in frictional contact. J. Sound Vibration 322, 798–807 (2009)CrossRefGoogle Scholar
  20. 20.
    Spelsberg-Korspeter G., Hochlenert D., Kirillov O.N., Hagedorn P.: In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena. Trans. ASME J. Appl. Mech. 76(4), 041, 006/1–041,006/14 (2009)CrossRefGoogle Scholar
  21. 21.
    Tross A.: Geteilter Bremsbelag, insbesondere für Schienenfahrzeuge. Deutsches Patentamt, Auslegeschrift 1170, 444 (1964)Google Scholar
  22. 22.
    von Wagner U., Schlagner S.: On the origin of disk brake squeal. Int. J. Vehicle Design 51(1–2), 223–237 (2009)CrossRefGoogle Scholar
  23. 23.
    von Wagner U., Hochlenert D., Hagedorn P.: Minimal models for the explanation of disk brake squeal. J. Sound Vibration 302, 527–539 (2007)CrossRefGoogle Scholar
  24. 24.
    Wiemers, M.: Einfluss von Steifigkeit und Dämpfung bei Eisenbahnrädern insbesondere von Güterwagenrädern auf die Schallabstrahlung. PhD thesis, TU Berlin (2005)Google Scholar
  25. 25.
    Zander, C.P.: Klotzbremsen mit Sintermetallbelägen. ZEV + DET Glas 125 (2001)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Utz von Wagner
    • 1
  • Gottfried Spelsberg-Korspeter
    • 2
  1. 1.Department of Applied MechanicsTU BerlinBerlinGermany
  2. 2.System Reliability and Machine Acoustics, LOEWE-Zentrum AdRIA, Dynamics and Vibrations GroupTU DarmstadtDarmstadtGermany

Personalised recommendations