Archive of Applied Mechanics

, Volume 81, Issue 1, pp 97–109 | Cite as

Peristaltic flow of a couple stress fluid under the effect of induced magnetic field in an asymmetric channel

  • Sohail Nadeem
  • Safia Akram


The present paper investigates the peristaltic transport of a couple stress fluid in an asymmetric channel with the effect of the induced magnetic field. The exact solutions of momentum and the magnetic field equations have been calculated under the assumptions of long wave length and low but finite Reynolds number. The expression for pressure rise has been computed numerically using mathematics software Mathematica. The graphical results have been presented to discuss the physical behavior of various physical parameters of interest. Finally, the trapping phenomena have been discussed for various physical parameters.


Peristaltic flow Couple stress fluid Induced magnetic field Asymmetric channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stokes V.K.: Couple stress fluid. Phys. Fluids. 9, 1709–1715 (1966)CrossRefGoogle Scholar
  2. 2.
    Srivastava L.M.: Peristaltic transport of a couple stress fluid. Rheol. Acta. 25, 638–641 (1986)CrossRefGoogle Scholar
  3. 3.
    Mekheimer Kh.S., Abd Elmaboud Y.: Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope. Phys. A 387, 2403–2415 (2008)Google Scholar
  4. 4.
    Valanis K.C., Sun C.T.: Poiseuille flow of a fluid with couple stress with application to blood flow. Biorheology 6, 85–97 (1969)Google Scholar
  5. 5.
    Vajravelu K., Sreenadh S.: Peristaltic transport of a Herschel-Bulkley fluid in an inclined tube. Int. J. Non-Linear Mech. 40, 83 (2005)zbMATHCrossRefGoogle Scholar
  6. 6.
    Nadeem S., Akbar N.S.: Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of Adomian decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14, 3844–3855 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Shapiro A.H., Jaffrin M.Y., Weinberg S.L.: Peristaltic pumping with long wave length at low Reynolds numbers. J. Fluid. Mech. 37, 799–825 (1969)CrossRefGoogle Scholar
  8. 8.
    Fung Y.C., Yih C.S.: Peristaltic transport. J. Appl. Mech. 35, 669–675 (1968)zbMATHGoogle Scholar
  9. 9.
    Hung T.K., Brown T.D.: J. Fluid Mech. 73, 77 (1976)CrossRefGoogle Scholar
  10. 10.
    Brown T.D., Hung T.K.: Computational and experimental investigations of two dimensional non linear peristaltic flows. J. Fluid Mech. 83, 249 (1977)zbMATHCrossRefGoogle Scholar
  11. 11.
    Weinberg S.L., Eekistein E.C., Shapiro A.H.: An experimental study of peristaltic pumping. J. Fluid Mech. 49, 461–497 (1971)CrossRefGoogle Scholar
  12. 12.
    Yih C.S., Fung Y.C.: Peristaltic waves in circular cylindrical tubes. J. Appl. Mech. 36, 579–587 (1969)Google Scholar
  13. 13.
    Yih C.S., Fung Y.C.: Comparison of theory and experiment in peristaltic transport. J. Fluid Mech. 47, 93–112 (1971)CrossRefGoogle Scholar
  14. 14.
    Nadeem S., Akram S.: Heat transfer in a peristaltic flow of MHD fluid with partial slip. Commun. Nonlinear Sci. Numer. Simul. 15, 312–321 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ali N., Hayat T., Sajid M.: Peristaltic flow of a couple strees fluid in an asymmetric channel. Biorheology 44, 125–138 (2007)Google Scholar
  16. 16.
    Haroun M.H.: Non-linear peristaltic flow of a fourth grade fluid in an inclined asymmetric channel. Comput. Mater. Sci. 39, 324–333 (2007)CrossRefGoogle Scholar
  17. 17.
    El Hakeem A., El Naby A., El Misiery A.E.: Efects of an endoscope and generalized Newtonian fluid on peristaltic motion. Appl. Math. Comput. 128, 19–35 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Haroun M.H.: Effects of Deborah number and phase difference on peristaltic transport of a third order fluid in an asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 12, 1464–1480 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hayat T., Ali N., Asghar S.: Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Phys. Lett. A 363, 397–403 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Haroun M.H.: J. Appl. Mech. Tech. Phys. 46, 842–850 (2005)CrossRefGoogle Scholar
  21. 21.
    Mekheimer Kh.S.: Nonlinear peristaltic transport through a porous medium in an inclined planar channel. J. Porous Media. 6, 189–201 (2003)zbMATHCrossRefGoogle Scholar
  22. 22.
    Elshehawey E.F., Eldabe N.T., Elghazy E.M., Ebaid A.: Peristaltic transport in an asymmetric channel through porous medium. Appl. Math. Comput. 182, 140–150 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    El Hakeem A., El Naby A., El Misiery A.E.: Hydromagnetic flow of generalized Newtonian fluid through a uniform tube through peristalsis. Appl. Math. Comput. 173, 856–871 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Hayat T., Ali N.: A mathematical decription of peristaltic hydromagnetic flow in a tube. Appl. Math. Comput. 188, 1491–1502 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mekheimer Kh.S.: Effect of induced magnetic field on peristaltic flow of a couple stress fluid. Phys. Lett. A. 372, 4271–4278 (2008)CrossRefGoogle Scholar
  26. 26.
    Srivastava L.M., Agrawal R.P.: Oscillating flow of a conducting fluid with suspension of spherical particles. J. Appl. Mech. 47, 196 (1980)CrossRefGoogle Scholar
  27. 27.
    Agrawal H.L., Anwaruddin B.: Peristaltic flow of blood in a branch. Ranchi Uni. Math. J 15, 111 (1984)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Orisaka M., Kurokawa T., Shukunami K., Orisaka S., Fukuda M.T., Shinagawa A., Fukuda S., Ihara N., Yamada H., Itoh H., Kotsuji F.: A comparison of uterine peristalsis in women with normal uteri and uterine leiomyoma by cine magnetic resonance imaging. Eur. J. Obstet. Gynecol. Reprod. Biol. 135, 111–115 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations