Archive of Applied Mechanics

, Volume 80, Issue 5, pp 513–525 | Cite as

Mechanical competence of bone-implant systems can accurately be determined by image-based micro-finite element analyses

  • Andreas J. Wirth
  • Thomas L. Mueller
  • Wim Vereecken
  • Cyril Flaig
  • Peter Arbenz
  • Ralph Müller
  • G. Harry van Lenthe
Special Issue

Abstract

The precise failure mechanisms of bone implants are still incompletely understood. Micro-computed tomography in combination with finite element analysis appears to be a potent methodology to determine the mechanical stability of bone-implant constructs. To assess this microstructural finite element (μFE) analysis approach, pull-out tests were designed and conducted on ten sheep vertebral bodies into which orthopedic screws were inserted. μFE models of the same bone-implant constructs were then built and solved, using a large-scale linear FE-solver. μFE calculated pull-out strength correlated highly with the experimentally measured pull-out strength (r2 = 0.87) thereby statistically supporting the μFE approach. These results suggest that bone-implant constructs can be analyzed using μFE in a detailed and unprecedented way. This could potentially facilitate the development of future implant designs leading to novel and improved fracture fixation methods.

Keywords

Bone-implant competence Micro-finite element analysis (μFEA) Bone microstructure Peri-implant bone quality Mechanical testing Pull-out strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NOF 2002 America’s bone health: The state of osteoporosis and low bone mass in our nationGoogle Scholar
  2. 2.
    Chrischilles E.A., Butler C.D., Davis C.S., Wallace R.B.: A model of lifetime osteoporosis impact. Arch. Int. Med. 151(10), 2026–2032 (1991)CrossRefGoogle Scholar
  3. 3.
    Burge R., Dawson-Hughes B., Solomon D.H., Wong J.B., King A., Tosteson A.: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22(3), 465–475 (2007)CrossRefGoogle Scholar
  4. 4.
    Ray, N.F., Chan, J.K., Thamer, M., Melton, L.J.: 3rd 1997 Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J. Bone Miner. Res. 12(1), 24–35Google Scholar
  5. 5.
    Schneider E., Goldhahn J., Burckhardt P.: The challenge: fracture treatment in osteoporotic bone. Osteoporos. Int. 16(Suppl 2), S1–S2 (2005)CrossRefGoogle Scholar
  6. 6.
    Cornell C.N.: Internal fracture fixation in patients with osteoporosis. J. Am. Acad. Orthop. Surg. 11(2), 109–119 (2003)MathSciNetGoogle Scholar
  7. 7.
    Seebeck J., Goldhahn J., Morlock M.M., Schneider E.: Mechanical behavior of screws in normal and osteoporotic bone. Osteoporos. Int. 16(Suppl 2), S107–S111 (2005)CrossRefGoogle Scholar
  8. 8.
    Alsaadi G., Quirynen M., Komarek A., van Steenberghe D.: Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J. Clin. Periodontol. 34(7), 610–617 (2007)CrossRefGoogle Scholar
  9. 9.
    Becker W., Hujoel P.P., Becker B.E., Willingham H.: Osteoporosis and implant failure: an exploratory case-control study. J. Periodontol. 71(4), 625–631 (2000)CrossRefGoogle Scholar
  10. 10.
    Blomqvist J.E., Alberius P., Isaksson S., Linde A., Hansson B.G.: Factors in implant integration failure after bone grafting: an osteometric and endocrinologic matched analysis. Int. J. Oral Maxillofac. Surg. 25(1), 63–68 (1996)CrossRefGoogle Scholar
  11. 11.
    Bonnaire F., Zenker H., Lill C., Weber A.T., Linke B.: Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos. Int. 16(Suppl 2), S93–S102 (2005)CrossRefGoogle Scholar
  12. 12.
    Goldhahn J., Seebeck J., Frei R., Frenz B., Antoniadis I., Schneider E.: New implant designs for fracture fixation in osteoporotic bone. Osteoporos. Int. 16(Suppl 2), S112–S119 (2005)CrossRefGoogle Scholar
  13. 13.
    Lovald S.T., Khraishi T., Wagner J., Baack B., Kelly J., Wood J.: Comparison of plate-screw systems used in mandibular fracture reduction: finite element analysis. J. Biomech. Eng. 128(5), 654–662 (2006)CrossRefGoogle Scholar
  14. 14.
    Cegonino J., Garcia Aznar J.M., Doblare M., Palanca D., Seral B., Seral F.: A comparative analysis of different treatments for distal femur fractures using the finite element method. Comput. Methods Biomech. Biomed. Eng. 7(5), 245–256 (2004)CrossRefGoogle Scholar
  15. 15.
    Hansson S., Werke M.: The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J. Biomech. 36(9), 1247–1258 (2003)CrossRefGoogle Scholar
  16. 16.
    Huang H.L., Hsu J.T., Fuh L.J., Tu M.G., Ko C.C., Shen Y.W.: Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J. Dent. 36(6), 409–417 (2008)CrossRefGoogle Scholar
  17. 17.
    Keaveny T.M., Morgan E.F., Niebur G.L., Yeh O.C.: Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3, 307–333 (2001)CrossRefGoogle Scholar
  18. 18.
    Tsubota K., Adachi T., Tomita Y.: Effects of a fixation screw on trabecular structural changes in a vertebral body predicted by remodeling simulation. Ann. Biomed. Eng. 31(6), 733–740 (2003)CrossRefGoogle Scholar
  19. 19.
    Müller R., Hildebrand T., Häuselmann H.J., Rüegsegger P.: In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J. Bone Miner. Res. 11(11), 1745–1750 (1996)CrossRefGoogle Scholar
  20. 20.
    Balto K., Müller R., Carrington D.C., Dobeck J., Stashenko P.: Quantification of periapical bone destruction in mice by micro-computed tomography. J. Dent. Res. 79(1), 35–40 (2000)CrossRefGoogle Scholar
  21. 21.
    Yamashita T., Nabeshima Y., Noda M.: High-resolution micro-computed tomography analyses of the abnormal trabecular bone structures in klotho gene mutant mice. J. Endocrinol. 164(2), 239–245 (2000)CrossRefGoogle Scholar
  22. 22.
    Turner C.H., Hsieh Y.F., Müller R., Bouxsein M.L., Baylink D.J., Rosen C.J., Grynpas M.D., Donahue L.R., Beamer W.G.: Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J. Bone Miner. Res. 15(6), 1126–1131 (2000)CrossRefGoogle Scholar
  23. 23.
    Alexander J.M., Bab I., Fish S., Müller R., Uchiyama T., Gronowicz G., Nahounou M., Zhao Q., White D.W., Chorev M., Gazit D., Rosenblatt M.: Human parathyroid hormone 1-34 reverses bone loss in ovariectomized mice. J. Bone Miner. Res. 16(9), 1665–1673 (2001)CrossRefGoogle Scholar
  24. 24.
    Dempster D.W., Cosman F., Kurland E.S., Zhou H., Nieves J., Woelfert L., Shane E., Plavetic K., Müller R., Bilezikian J., Lindsay R.: Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J. Bone Miner. Res. 16(10), 1846–1853 (2001)CrossRefGoogle Scholar
  25. 25.
    Amling M., Herden S., Posl M., Hahn M., Ritzel H., Delling G.: Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J. Bone Miner. Res. 11(1), 36–45 (1996)CrossRefGoogle Scholar
  26. 26.
    Hildebrand T., Laib A., Müller R., Dequeker J., Rüegsegger P.: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14(7), 1167–1174 (1999)CrossRefGoogle Scholar
  27. 27.
    Eckstein F., Matsuura M., Kuhn V., Priemel M., Muller R., Link T.M., Lochmuller E.M.: Sex differences of human trabecular bone microstructure in aging are site-dependent. J. Bone Miner. Res. 22(6), 817–824 (2007)CrossRefGoogle Scholar
  28. 28.
    van Rietbergen B., Weinans H., Huiskes R., Odgaard A.: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1), 69–81 (1995)CrossRefGoogle Scholar
  29. 29.
    Ladd A.J., Kinney J.H., Haupt D.L., Goldstein S.A.: Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J. Orthop. Res. 16(5), 622–628 (1998)CrossRefGoogle Scholar
  30. 30.
    Kabel J., van Rietbergen B., Dalstra M., Odgaard A., Huiskes R.: The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32(7), 673–680 (1999)CrossRefGoogle Scholar
  31. 31.
    Homminga J., McCreadie B.R., Weinans H., Huiskes R.: The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J. Biomech. 36(10), 1461–1467 (2003)CrossRefGoogle Scholar
  32. 32.
    Niebur G.L., Feldstein M.J., Yuen J.C., Chen T.J., Keaveny T.M.: High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33(12), 1575–1583 (2000)CrossRefGoogle Scholar
  33. 33.
    Bayraktar H.H., Morgan E.F., Niebur G.L., Morris G.E., Wong E.K., Keaveny T.M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37(1), 27–35 (2004)CrossRefGoogle Scholar
  34. 34.
    van Lenthe G.H., Voide R., Boyd S.K., Muller R.: Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone 43(4), 717–723 (2008)CrossRefGoogle Scholar
  35. 35.
    van Rietbergen B., Huiskes R., Eckstein F., Rüegsegger P.: Trabecular bone tissue strains in the healthy and osteoporotic human femur. J. Bone Miner. Res. 18(10), 1781–1788 (2003)CrossRefGoogle Scholar
  36. 36.
    Homminga J., Van-Rietbergen B., Lochmüller E.M., Weinans H., Eckstein F., Huiskes R.: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34(3), 510–516 (2004)CrossRefGoogle Scholar
  37. 37.
    Eswaran S.K., Gupta A., Adams M.F., Keaveny T.M.: Cortical and trabecular load sharing in the human vertebral body. J. Bone Miner. Res. 21(2), 307–314 (2006)CrossRefGoogle Scholar
  38. 38.
    Arbenz P., van Lenthe G.H., Mennel U., Müller R., Sala M.: A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int. J. Numer. Methods Eng. 73(7), 927–947 (2008)MATHCrossRefGoogle Scholar
  39. 39.
    Arbenz, P., van Lenthe, G.H., Müller, R., Wirth, A.J., Bekas, C., Curioni, A.: Extreme scalability challenges in analyses of human bone structures. In: Schrefler, B.A., Perego, U. (eds.) Joint Meeting of the 8th World Congress on Computational Mechanics (WCCM8) and 5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy (2008)Google Scholar
  40. 40.
    van Lenthe G.H., Hagenmuller H., Bohner M., Hollister S.J., Meinel L., Muller R.: Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28(15), 2479–2490 (2007)CrossRefGoogle Scholar
  41. 41.
    Hou F.J., Lang S.M., Hoshaw S.J., Reimann D.A., Fyhrie D.P.: Human vertebral body apparent and hard tissue stiffness. J. Biomech. 31(11), 1009–1015 (1998)CrossRefGoogle Scholar
  42. 42.
    The ParFE Project Home Page; http://parfe.sourceforge.net
  43. 43.
    Pistoia W., van Rietbergen B., Lochmuller E.M., Lill C.A., Eckstein F., Ruegsegger P.: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6), 842–848 (2002)CrossRefGoogle Scholar
  44. 44.
    Mullner H.W., Fritsch A., Kohlhauser C., Reihsner R., Hellmich C., Godlinski D., Rota A., Slesinski R., Eberhardsteiner J.: Acoustical and poromechanical characterisation of titanium scaffolds for biomedical applications. Strain 44(2), 153–163 (2008)CrossRefGoogle Scholar
  45. 45.
    Phillips, F.M., Turner, A.S., Seim, H.B. III, MacLeay, J., Toth, C.A., Pierce, A.R., Wheeler, D.L.: In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. Spine J. 6(5), 500–506 (2006)Google Scholar
  46. 46.
    Lamghari M., Berland S., Laurent A., Huet H., Lopez E.: Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22(6), 555–562 (2001)CrossRefGoogle Scholar
  47. 47.
    Wilke H.J., Kettler A., Wenger K.H., Claes L.E.: Anatomy of the sheep spine and its comparison to the human spine. Anat. Rec. 247(4), 542–555 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andreas J. Wirth
    • 1
  • Thomas L. Mueller
    • 1
  • Wim Vereecken
    • 1
    • 3
  • Cyril Flaig
    • 2
  • Peter Arbenz
    • 2
  • Ralph Müller
    • 1
  • G. Harry van Lenthe
    • 1
    • 3
  1. 1.Institute for BiomechanicsETH Zurich, HPI F 22ZurichSwitzerland
  2. 2.Chair of Computational ScienceETH ZurichZurichSwitzerland
  3. 3.Division of Biomechanics and Engineering DesignK.U.LeuvenLeuvenBelgium

Personalised recommendations