Advertisement

Archive of Applied Mechanics

, Volume 80, Issue 5, pp 489–502 | Cite as

Ultrasound propagation in cancellous bone

  • Holger Steeb
Special Issue

Abstract

Wave propagation in fluid-saturated cancellous bone is studied on the basis of two approaches: The thermodynamic-consistent Theory of Porous Media (TPM) and Biot’s theory. Phase velocities in the low-frequency range, calculated with the Biot-Gassmann relations, Wyllie’s equation and the TPM, are demonstrating that a simple, so-called hybrid biphasic TPM model is able to capture the main acoustical effects in cancellous bones. Furthermore, an extension towards high-frequency wave propagation is discussed on the basis of the constitutive relations for the momentum exchange of the fluid and the solid phases. Further numerical results show that, in the high-frequency (ultrasound) range a viscous correction as well as an added mass effect (tortuosity) needs to be taken into account to explain experimentally obtained results.

Keywords

Wave propagation Cancellous bone Porous media Ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barkmann R., Glüer C.C.: Quantitativer Ultraschall. Radiologe 46, 861–869 (2006)CrossRefGoogle Scholar
  2. 2.
    Berryman J.G.: Confirmation of Biot’s theory. Appl. Phys. Lett. 37, 382–384 (1980)CrossRefGoogle Scholar
  3. 3.
    Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I. Low-frequency range. J. Acoust. Soc. Am. 29, 168–191 (1956)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High-frequency range. J. Acoust. Soc. Am. 29, 168–191 (1956)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Biot M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Biot M.A., Willis D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)MathSciNetGoogle Scholar
  7. 7.
    Bluhm J.: Zur Berücksichtigung der Kompressibilität des Festkörpers bei porösen Materialien. Z. angew. Math. Mech. 77, S39–S40 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boltzmann L.: Zur Theorie der elastischen Nachwirkung. Sitzber Kgl Akad Wiss Wien 70, 275–306 (1874)Google Scholar
  9. 9.
    Cederbaum G., Li L.P., Schulgasser K.: Poroelastic Structures. Elsevier, Amsterdam (2000)Google Scholar
  10. 10.
    de Boer R.: Trends in Continuum Mechanics of Porous Media. Springer, Berlin (2005)zbMATHGoogle Scholar
  11. 11.
    Diebels, S.: Mikropolare Zweiphasenmodelle: Modellierung auf der Basis der Theorie Poröser Medien. Habilitationsschrift, Institut für Mechanik (Bauwesen), Nr. II-4, Universität Stuttgart (2000)Google Scholar
  12. 12.
    Dubs B.: Quantitativer Ultraschall (Osteosonometrie) in der Osteoporosediagnostik. Ortopädie 31, 176–180 (2002)CrossRefGoogle Scholar
  13. 13.
    Ehlers, W., Bluhm, J. (eds): Porous Media. Springer, Berlin (2002)zbMATHGoogle Scholar
  14. 14.
    Evans J.A., Tavakoli M.B.: Ultrasonic attenuation and velocity in bone. Phys. Med. Biol. 35, 1387–1396 (1990)CrossRefGoogle Scholar
  15. 15.
    Gassmann F.: Über die Elastizität poröser Medien. Vierteljahresschrift d Naturf Ges Zürich 96, 1–23 (1951)MathSciNetGoogle Scholar
  16. 16.
    Gibson L.J.: The mechanical behaviour of cancellous bone. J. Biomech. 18, 317–328 (1985)CrossRefGoogle Scholar
  17. 17.
    Gibson L.J., Ashby M.F.: Cellular Solids. Structure and Properties. Cambridge University Press, Cambridge (1997)Google Scholar
  18. 18.
    Glüer C.C.: Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J. Bone Miner. Res. 12, 1280–1288 (1997)CrossRefGoogle Scholar
  19. 19.
    Haiat G., Padilla F., Peyrin F., Lauqier P.: Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy. J. Acoust. Soc. Am. 123, 1694–1705 (2008)CrossRefGoogle Scholar
  20. 20.
    Haire T.J., Langton C.M.: Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone 24, 291–295 (1999)CrossRefGoogle Scholar
  21. 21.
    Hassanizadeh S.M., Gray W.G.: High velocity flow in porous media. Trans. Porous Media 2, 521–531 (1987)CrossRefGoogle Scholar
  22. 22.
    Hosokawa A., Otani T.: Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101, 1–5 (1997)CrossRefGoogle Scholar
  23. 23.
    Hughes E.R., Leighton T.G., Petley G.W., White P.R.: Ultrasonic propagation in cancellous bone: a new stratified model. Ultrasound Med. Biol. 25, 811–821 (1999)CrossRefGoogle Scholar
  24. 24.
    Hughes E.R., Leighton T.G., Petley G.W., White P.R., Chivers R.C.: Estimation of critical and viscous frequencies for Biot theory in cancellous bone. Ultrasonics 41, 365–368 (2003)CrossRefGoogle Scholar
  25. 25.
    Johnson D.L., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid. Mech. 176, 379–402 (1987)zbMATHCrossRefGoogle Scholar
  26. 26.
    Johnson M.W., Chakkalakal D.A., Harper R.A., Katz J.L., Rouhana S.W.: Fluid flow in bone in vitro. J. Biomech. 15, 881–885 (1982)CrossRefGoogle Scholar
  27. 27.
    Kaufman J.J., Luo G., Siffert R.S.: Ultrasound simulation in bone. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1205–1218 (2008)CrossRefGoogle Scholar
  28. 28.
    Kelder, O.: Frequency-dependent wave propagation in water-saturated porous media. Ph.D. thesis, Delft University of Technology (1998)Google Scholar
  29. 29.
    Kirchner N.: Thermodynamnically consistent modelling of abrasive granular materials. I. Non-equilibrium-theory. Proc. R. Soc. Lond. A 458, 2153–2176 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Langton C.M., Njeh C.F.: The measurement of broadband ultrasonic attenuation in cancellous bone—a review of the science and technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1546–1554 (2008)CrossRefGoogle Scholar
  31. 31.
    Langton C.M., Palmer S.B., Porter R.W.: The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med. 13, 89–91 (1984)CrossRefGoogle Scholar
  32. 32.
    Lee K.I., Yoon S.W.: Comparison of acoustic characteristics predicted by Biot’s theory and the modified Biot-Attenborough model in cancellous bone. J. Biomech. 39, 364–368 (2006)CrossRefGoogle Scholar
  33. 33.
    Mavko G., Mukerji T., Dvorkin J.: The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media. Cambridge University Press, Cambridge (2003)Google Scholar
  34. 34.
    McKelvie M.L., Palmer S.B.: The interaction of ultrasound with cancellous bone. Phys. Med. Biol. 36, 1331–1340 (1991)CrossRefGoogle Scholar
  35. 35.
    Njeh C.F., Boivin C.M., Langton C.M.: The role of ultrasound in the management of osteoporosis: a review. Osteoporos. Int. 7, 7–22 (1997)CrossRefGoogle Scholar
  36. 36.
    Nowinski J.L., Davis C.F.: A model of the human skull as a poroelastic spherical shell subjected to a quasistatic load. Math. Biosci. 8, 397–416 (1970)zbMATHCrossRefGoogle Scholar
  37. 37.
    Nowinski J.L., Davis C.F.: The flexure and torsion of bones viewed as anisotropic poroelastic bodies. Int. J. Eng. Sci. 10, 1063–1079 (1972)zbMATHCrossRefGoogle Scholar
  38. 38.
    Smeulders D.M.J.: Experimental evidence for slow compressional waves. J. Eng. Meth-ASCE 131, 908–917 (2005)CrossRefGoogle Scholar
  39. 39.
    Wilmański, K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Med. (32), 21–47 (1998)Google Scholar
  40. 40.
    Wilmański K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)CrossRefGoogle Scholar
  41. 41.
    Wyllie M.R.J., Gregory A.R., Gardner L.W.: Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41–70 (1956)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mechanics—Continuum MechanicsRuhr-University BochumBochumGermany

Personalised recommendations