Archive of Applied Mechanics

, Volume 80, Issue 5, pp 569–580 | Cite as

Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue

  • Serdar Göktepe
  • Jonathan Wong
  • Ellen Kuhl
Special Issue


This manuscript proposes a novel, efficient finite element solution technique for the computational simulation of cardiac electrophysiology. We apply a two-parameter model that is characterized through a fast action potential and a slow recovery variable. The former is introduced globally as a nodal degree of freedom, whereas the latter is treated locally as internal variable on the integration point level. This particular discretization is extremely efficient and highly modular since different cardiac cell models can be incorporated straightforwardly through only minor local modifications on the integration point level. In this manuscript, we illustrate the algorithm in terms of the Aliev–Panfilov model for cardiomyocytes. To ensure unconditional stability, a backward Euler scheme is applied to discretize the evolution equation for both the action potential and the recovery variable in time. To increase robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton–Raphson scheme and illustrate the consistent linearization of the weak form of the excitation problem. The proposed algorithm is illustrated by means of two- and three-dimensional examples of re-entrant spiral and scroll waves characteristic of cardiac arrhythmias in atrial and ventricular fibrillation.


Electrophysiology Excitation Finite elements Re-entry Spiral waves Scroll waves Aliev–Panfilov model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Heart Association.: Heart Disease and Stroke Statistics—2008 Update. American Heart Association, Dallas (2008)Google Scholar
  2. 2.
    Aliev R.R., Panfilov A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7, 293–301 (1996)CrossRefGoogle Scholar
  3. 3.
    Beeler G.W., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. 268, 177–210 (1977)Google Scholar
  4. 4.
    Berne R.M., Levy M.N.: Cardiovascular Physiology. Mosby, St. Louis (2001)Google Scholar
  5. 5.
    Bers M.D.: Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer, Dordrecht (2001)Google Scholar
  6. 6.
    Clayton R.H., Panfilov A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96, 19–43 (2008)CrossRefGoogle Scholar
  7. 7.
    Fenton F.H., Karma A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fenton F.H., Cherry E.M., Hastings H.M., Evans S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002)CrossRefGoogle Scholar
  9. 9.
    FitzHugh R.: Impulses and physiological states in theoretical models of nerve membranes. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  10. 10.
    Ganong W.F.: Review of Medical Physiology. McGraw-Hill, NY (2003)Google Scholar
  11. 11.
    Göktepe S., Kuhl E.: Computational modeling of cardiac electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79, 156–178 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Göktepe, S., Kuhl, E.: Electromechanics of the heart—a unified approach to the strongly coupled excitation-contraction problem. Comput. Mech. (2009, in press)Google Scholar
  13. 13.
    Hodgkin A.L., Huxley A.F.: A quantitative description of membrane current and its application to conductance and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  14. 14.
    Hunter P.J., McCulloch A.D., ter Keurs H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–331 (1998)CrossRefGoogle Scholar
  15. 15.
    Keener J., Sneyd J.: Mathematical Physiology. Springer, Berlin (2004)Google Scholar
  16. 16.
    Klabunde R.E.: Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  17. 17.
    Kotikanyadanam, M., Göktepe, S., Kuhl, E.: Computational modeling of electrocardiograms—a finite element approach towards cardiac excitation. Commun. Numer. Methods Eng. doi: 10.1002/cnm.1273
  18. 18.
    Luo C., Rudy Y.: A model of the ventricular cardiac action potential. Depolarization, repolarization, and their changes. Circ. Res. 68, 1501–1526 (1991)Google Scholar
  19. 19.
    Mines G.R.: On the dynamic equilibrium of the heart. J. Physiol. 46, 349–383 (1913)Google Scholar
  20. 20.
    Nagumo J., Arimoto S., Yoshizawa S.: Active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)Google Scholar
  21. 21.
    Nash M.P., Panfilov A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhytmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004)CrossRefGoogle Scholar
  22. 22.
    Noble D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. 160, 317–352 (1962)Google Scholar
  23. 23.
    Opie L.H.: Heart Physiology: From Cell to Circulation. Lippincott Williams & Wilkins, Philadelphia (2003)Google Scholar
  24. 24.
    Panfilov A.V., Nash M.P.: Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys. Rev. Lett. 95, 258104-1–258014-4 (2005)CrossRefGoogle Scholar
  25. 25.
    Panfilov A.V., Keldermann R.H., Nash M.P.: Drift and breakup of spiral waves in reaction-diffusion-mechanics systems. Proc. Natl. Acad. Sci. USA 104, 7922–7926 (2007)CrossRefGoogle Scholar
  26. 26.
    Plonsey R., Barr R.C.: Bioelectricity. A Quantitative Approach. Springer, Berlin (2007)zbMATHGoogle Scholar
  27. 27.
    Rogers J.M., McCulloch A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)CrossRefGoogle Scholar
  28. 28.
    Rogers J.M., McCulloch A.D.: Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J. Cardiovasc. Electrophysiol. 5, 496–509 (1994)CrossRefGoogle Scholar
  29. 29.
    Rogers J.M.: Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Chaos 12, 779–787 (2002)CrossRefGoogle Scholar
  30. 30.
    Sachse F.B.: Computational Cardiology. Springer, Berlin (2004)zbMATHGoogle Scholar
  31. 31.
    Sermesant M., Rhode K., Sanchez-Ortiz G.I., Camara O., Andriantsimiavona R., Hegde S., Rueckert D., Lambiase P., Bucknall C., Rosenthal E., Delingette H., Hill D.L.G., Ayache N., Razavi R.: Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med. Image Anal. 9, 467–480 (2005)CrossRefGoogle Scholar
  32. 32.
    Sermesant M., Delingette H., Ayache N.: An electromechanical model of the heart for image analysis and simulation. IEEE Trans. Med. Imaging 25, 612–625 (2006)CrossRefGoogle Scholar
  33. 33.
    Sermesant M., Peyrat J.-M., Chinchapatnam P., Billet F., Mansi T., Rhode K., Delingette H., Razavi R., Ayache N.: Towards patient-specific myocardial models of the heart. Heart Fail. Clin. 4, 289–301 (2008)CrossRefGoogle Scholar
  34. 34.
    ten Tuscher K.H.W.J., Panfilov A.V.: Modelling of the ventricular conduction system. Prog. Biophys. Mol. Biol. 96, 152–170 (2008)CrossRefGoogle Scholar
  35. 35.
    Zheng Z., Croft J., Giles W., Mensah G.: Sudden cardiac death in the United States. Circulation 104, 2158–2163 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Departments of Bioengineering, and Cardiothoracic SurgeryStanford UniversityStanfordUSA

Personalised recommendations