Advertisement

Archive of Applied Mechanics

, Volume 80, Issue 5, pp 557–567 | Cite as

Micromechanical modelling of skeletal muscles: from the single fibre to the whole muscle

  • Markus BölEmail author
Special Issue

Abstract

The structure of a skeletal muscle is dominated by its hierarchical architecture in which thousands of muscle fibres are arranged within a connective tissue network. The single muscle fibre consists of many force-producing cells, known as sarcomeres, which contribute to the contraction of the whole muscle. There are a lot of questions concerning the optimisation of muscle strength and agility. To answer these questions, numerical testing tools, e.g. in the form of finite element models can be an adequate alternative to standard experimental investigations. The present approach is crucially based on the use of the finite element method. The material behaviour of the muscle is additively split into a so-called active and a passive part. To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived. Embedded into these unit cells are non-linear truss elements which represent bundles of muscle fibres. Besides the representation of the material model, this contribution focuses on the application to anatomically based 3D problems, as the animal soleus muscle of the rat.

Keywords

Skeletal muscle Finite element method Micromechanical modelling Soleus muscle Muscle activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ariano M.A., Armstrong R.B., Edgerton V.R.: Hindlimb muscle fiber populations of five mammals. J. Histochem. Cytochem. 21(1), 51–55 (1973)Google Scholar
  2. 2.
    Blemker S.S., Pinsky P.M., Delp S.L.: A 3d model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38, 657–665 (2005)CrossRefGoogle Scholar
  3. 3.
    Blix M.: Die Länge und die Spannung des Muskels. Skand. Arch. Physiol. 3, 295–318 (1894)Google Scholar
  4. 4.
    Böl M., Reese S.: Finite element modelling of rubber-like polymers based on chain statistics. Int. J. Solids Struct. 43, 2–26 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Böl M., Reese S.: A new approach for the simulation of skeletal muscles using the tool of statistical mechanics. Mater. Sci. Eng. Technol. 38, 955–964 (2007)Google Scholar
  6. 6.
    Böl M., Reese S.: Micromechanical modelling of skeletal muscles based on the finite element method. Comput. Methods Biomech. Biomed. Eng. 11, 489–504 (2008)CrossRefGoogle Scholar
  7. 7.
    Böl, M., Reese, S., Parker, K.K. Kuhl, E.: Computational modeling of muscular thin films for cardiac repair. Comput. Mech. http://www.springerlink.com/content/q83035412861087q/ (2008)
  8. 8.
    Edström L., Larsson L.: Effects of age on contractile and enzyme-histochemical properties of fast- and slow-twitch single motor units in the rat. J. Physiol. 392, 129–145 (1987)Google Scholar
  9. 9.
    Fung Y.C.: Biomechanics: Mechanical Properties of Living Tissue. Springer, New York (1993)Google Scholar
  10. 10.
    Gordon A.M., Huxley A.F., Julian F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184, 170–192 (1966)Google Scholar
  11. 11.
    Hill A.V.: The maximum work and mechanical efficiency of human muscles, and their most economical speed. J. Physiol. 56, 19–41 (1922)Google Scholar
  12. 12.
    Hill A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938)CrossRefGoogle Scholar
  13. 13.
    Huxley A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)Google Scholar
  14. 14.
    Kernell D., Eerbeek O., Verhey B.A.: Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Exp. Brain Res. 50, 220–227 (1983)Google Scholar
  15. 15.
    Magnusson S.P., Hansen P., Aagaard P., Brønd J., Dyhre-Poulsen P., Bojsen-Moller J.: Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol. Scand. 177, 185–195 (2003)CrossRefGoogle Scholar
  16. 16.
    Pette D., Staron R.S.: Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol. 116, 1–47 (1990)Google Scholar
  17. 17.
    Schmalbruch H.: Skeletal Muscle. Springer, Berlin (1985)Google Scholar
  18. 18.
    Stark, H.: Die 3D-Architektur der Muskelfaszikel in ausgewählten Muskeln und ihre Relevanz zur Kraftentwicklung. Ph.D. thesis, Friedrich-Schiller-Universität Jena (2008)Google Scholar
  19. 19.
    Staron R.S., Kraemer W.J., Hikida R.S., Fry A.C., Murray J.D., Campos G.E.R.: Fiber type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem. Cell Biol. 111, 117–123 (1999)CrossRefGoogle Scholar
  20. 20.
    Taylor A.M., Steege J.W., Enoka R.M.: Motor-unit synchronization alters spike-triggered average force in simulated contractions. J. Neurophysiol. 88, 265–276 (2002)Google Scholar
  21. 21.
    Tsui C.P., Tang C.Y., Leung C.P., Cheng K.W., Ng Y.F., Chow D.H.K., Li C.K.: Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. Biomed. Mater. Eng. 14, 271–279 (2004)Google Scholar
  22. 22.
    van Leeuwen J.L.: Muscle function in locomotion. In: Alexander, R.M. (eds) Mechanics of Animal Locomotion, pp. 191–249. Springer, Berlin (1992)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnische Universität Carolo-WilhelminaBraunschweigGermany

Personalised recommendations