Archive of Applied Mechanics

, Volume 80, Issue 1, pp 73–92 | Cite as

On generalized Cosserat-type theories of plates and shells: a short review and bibliography

  • Johannes Altenbach
  • Holm Altenbach
  • Victor A. Eremeyev
Special Issue

Abstract

One of the research direction of Horst Lippmann during his whole scientific career was devoted to the possibilities to explain complex material behavior by generalized continua models. A representative of such models is the Cosserat continuum. The basic idea of this model is the independence of translations and rotations (and by analogy, the independence of forces and moments). With the help of this model some additional effects in solid and fluid mechanics can be explained in a more satisfying manner. They are established in experiments, but not presented by the classical equations. In this paper the Cosserat-type theories of plates and shells are debated as a special application of the Cosserat theory.

Keywords

Micropolar continuum Cosserat continuum Micropolar shell Cosserat shell Micropolar plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adhikary D.P., Dyskin A.V.: A continuum model of layered rock masses with non-associative joint plasticity. Int. J. Numer. Anal. Methods Geomech. 22(4), 245–261 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Adhikary D.P., Guo H.: An orthotropic Cosserat elasto-plastic model for layered rocks. Rock Mech. Rock Eng. 35(3), 161–170 (2002)CrossRefGoogle Scholar
  3. 3.
    Aero E.L., Kuvshinskii E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2(7), 1272–1281 (1961)Google Scholar
  4. 4.
    Aero E.L., Kuvshinskii E.V.: Continuum theory of asymmetric elasticity. Equilibrium of an isotropic body (in Russian). Fizika Tverdogo Tela 6, 2689–2699 (1964)MathSciNetGoogle Scholar
  5. 5.
    Aero E.L., Bulygin A.N., Kuvshinskii E.V.: Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–346 (1965)MATHCrossRefGoogle Scholar
  6. 6.
    Aganović I., Tambača J., Tutek Z.: Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elast. 84, 131–152 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    Allen S.J., DeSilva C.N., Kline K.A.: A theory of simple deformable directed fluids. Phys. Fluids 10(12), 2551–2555 (1967)MATHCrossRefGoogle Scholar
  8. 8.
    Altenbach H.: Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ingenieur Archiv. 58, 215–228 (1988)MATHCrossRefGoogle Scholar
  9. 9.
    Altenbach H., Eremeyev V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)MATHCrossRefGoogle Scholar
  10. 10.
    Altenbach H., Eremeyev V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204(3–4), 137–154 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM 89(4), 242–256 (2009)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Altenbach H., Zhilin P.A.: A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11(4), 107–148 (1988)MathSciNetGoogle Scholar
  13. 13.
    Altenbach H., Zhilin P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds) Critical Review of the Theories of Plates and Shells. Lecture Notes in Applied and Computational Mechanics, vol. 16, pp. 1–12. Springer, Berlin (2004)Google Scholar
  14. 14.
    Altenbach H., Naumenko K., Zhilin P.: A micro-polar theory for binary media with application to phase-transitional flow of fibre suspensions. Contin. Mech. Thermodyn. 15, 539–570 (2003)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rendón, L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. (2009). doi:10.1007/s00419-009-0314-1
  16. 16.
    Ambartsumian S.A.: The theory of transverse bending of plates with asymmetric elasticity. Mech. Compos. Mater. 32(1), 30–38 (1996)CrossRefGoogle Scholar
  17. 17.
    Ambartsumian S.A.: The Micropolar Theory of Plates and Shells (in Russian). NAN Armenii, Yerevan (1999)Google Scholar
  18. 18.
    Antman S.S.: Global properties of buckled states of plates that can suffer thickness changes. Arch. Ration. Mech. Anal. 110(2), 103–117 (1990)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer Science Media, New York (2005)MATHGoogle Scholar
  20. 20.
    Ariman T.: On circular micropolar plates. Ingenieur Archiv. 37(3), 156–160 (1968)MATHCrossRefGoogle Scholar
  21. 21.
    Başar Y.: A consistent theory of geometrically non-linear shells with an independent rotation vector. Int. J. Solids Struct. 23(10), 1401–1415 (1987)MATHCrossRefGoogle Scholar
  22. 22.
    Badur J., Pietraszkiewicz W.: On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations. In: Pietraszkiewicz, W. (eds) Finite Rotations in Structural Mechanics, pp. 19–32. Springer, Wien (1986)Google Scholar
  23. 23.
    Becker M., Lippmann H.: Plane plastic flow of granular model material. Experimental setup and results. Ingenieur Archiv. 29(6), 829–846 (1977)Google Scholar
  24. 24.
    Besdo D.: Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mech. 20, 105–131 (1974)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Bhattacharya K., James R.D.: A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47(3), 531–576 (1999)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Bîrsan M.: On a thermodynamic theory of porous Cosserat elastic shells. J. Thermal Stress. 29(9), 879–899 (2006)CrossRefGoogle Scholar
  27. 27.
    Bîrsan M.: On the theory of elastic shells made from a material with voids. Int. J. Solids Struct. 43(10), 3106–3123 (2006)CrossRefGoogle Scholar
  28. 28.
    Bîrsan M.: On Saint-Venant’s principle in the theory of Cosserat elastic shells. Int. J. Eng. Sci. 45(2–8), 187–198 (2007)CrossRefGoogle Scholar
  29. 29.
    Bîrsan M.: Inequalities of Korn’s type and existence results in the theory of Cosserat elastic shells. J. Elast. 90(3), 227–239 (2008)MATHCrossRefGoogle Scholar
  30. 30.
    Bîrsan M.: On Saint-Venant’s problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells. Int. J. Eng. Sci. 47(1), 21–38 (2009)CrossRefGoogle Scholar
  31. 31.
    Bîrsan M.: Thermal stresses in cylindrical Cosserat elastic shells. Eur. J. Mech. A Solids 28(1), 94–101 (2009)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bogdanova-Bontcheva N., Lippmann H.: Rotationenssymmetrisches ebenes Fließen eines granularen Modellmaterials. Acta Mech. 21(1–2), 93–113 (1975)CrossRefGoogle Scholar
  33. 33.
    Boschi E.: Lamb and Love wave-propagation in an infinite micropolar elastic plate. Ann. Geofisica 26(2–3), 341–355 (1973)Google Scholar
  34. 34.
    Capriz G.: Continua with Microstructure. Springer, New York (1989)MATHGoogle Scholar
  35. 35.
    Capriz G., Giovine P., Mariano P.M. (eds): Mathematical Models of Granular Matter. Lecture Notes in Mathematics. Springer, Berlin (2008)Google Scholar
  36. 36.
    Chambon R., Caillerie D., Matsuchima T.: Plastic continuum with micro structure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38(46–47), 8503–8527 (2001)MATHCrossRefGoogle Scholar
  37. 37.
    Chełmiński K., Neff P.: A note on approximation of Prandtl–Reuss plasticity through Cosserat plasticity. Q. Appl. Math. 66(2), 351–357 (2008)MATHGoogle Scholar
  38. 38.
    Chełmiński K., Neff P.: Hloc(1)-stress and strain regularity in Cosserat plasticity. ZAMM 89, 257–266 (2009)MATHCrossRefGoogle Scholar
  39. 39.
    Chinosi C., Della Croce L., Scapolla T.: Hierarchic finite elements for thin Naghdi shell model. Int. J. Solids Struct. 35(16), 1863–1880 (1998)MATHCrossRefGoogle Scholar
  40. 40.
    Chowdhur K.L., Glockner P.G.: Bending of an annular elastic Cosserat plate. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 21(3), 211–218 (1973)Google Scholar
  41. 41.
    Chróścielewski J.: Rodzina elementów skończonych klasy C 0 w nieliniowej sześcioparametrowej teorii powłok. Zesz Nauk Politechniki Gdańskiej LIII(540), 1–291 (1996)Google Scholar
  42. 42.
    Chróścielewski J., Makowski J., Stumpf H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Methods Appl. Mech. Eng. 141, 1–46 (1997)MATHCrossRefGoogle Scholar
  43. 43.
    Chróścielewski J., Makowski J., Pietraszkiewicz W.: Non-linear dynamics of flexible shell structures. Comp. Assisted Mech. Eng. Sci. 9, 341–357 (2002)MATHGoogle Scholar
  44. 44.
    Chró ścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych. Nieliniowa teoria i metoda elementów skończonych. Wydawnictwo IPPT PAN, Warszawa (2004)Google Scholar
  45. 45.
    Ciarlet P.: Mathematical Elasticity, vol. II. Theory of Plates. Elsevier, Amsterdam (1997)Google Scholar
  46. 46.
    Ciarlet P.: Mathematical Elasticity, vol. III. Theory of Shells. Elsevier, Amsterdam (2000)Google Scholar
  47. 47.
    Cielecka I., Woźniak M., Woźniak C.: Elastodynamic behaviour of honeycomb cellular media. J. Elast. 60, 1–17 (2000)MATHCrossRefGoogle Scholar
  48. 48.
    Cohen H., Thomas R.S.D.: Transient waves in inhomogeneous isotropic elastic plates. Acta Mech. 53(3–4), 141–161 (1984)MATHCrossRefGoogle Scholar
  49. 49.
    Cohen H., Thomas R.S.D.: Transient waves in inhomogeneous anisotropic elastic plates. Acta Mech. 58(1–2), 41–57 (1986)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Cohen H., Wang C.C.: A mathematical analysis of the simplest direct models for rods and shells. Arch. Ration. Mech. Anal. 108(1), 35–81 (1989)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Coleman B.D., Feinberg M., Serrin J. (eds): Analysis and Thermodynamics—A Collection of Papers Dedicated to W. Noll. Springer, Berlin (1987)Google Scholar
  52. 52.
    Constanda C.: Complex variable treatment of bending of micropolar plates. Int. J. Eng. Sci. 15(11), 661–669 (1977)MATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    Cosserat E., Cosserat F.: Sur la théorie de l’elasticité. Ann. Toulouse 10, 1–116 (1896)MathSciNetGoogle Scholar
  54. 54.
    Cosserat E., Cosserat F.: Théorie des corps déformables. Herman et Fils, Paris (1909)Google Scholar
  55. 55.
    Cramer H., Findeiss R., Steinl G., Wunderlich W.: An approach to the adaptive finite element analysis in associated and non-associated plasticity considering localization phenomena. Comput. Methods Appl. Mech. Eng. 176(1–4), 187–202 (1999)MATHCrossRefGoogle Scholar
  56. 56.
    DeBorst R.: Numerical modeling of bifurcation and localization in cohesive-frictional materials. Pure Appl. Geophys. 137(4), 367–390 (1991)CrossRefGoogle Scholar
  57. 57.
    DeBorst R.: A generalization of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103(3), 347–362 (1993)CrossRefGoogle Scholar
  58. 58.
    DeSilva C.N., Tsai P.J.: A general theory of directed surfaces. Acta Mech. 18(1–2), 89–101 (1973)MATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Diebels S.: A micropolar theory of porous media: constitutive modelling. Transp. Porous Media 34, 193–208 (1999)CrossRefGoogle Scholar
  60. 60.
    Diebels S.: A macroscopic description of the quasi-static behavior of granular materials based on the theory of porous media. Granul. Matter 2, 143–152 (2000)CrossRefGoogle Scholar
  61. 61.
    Diebels S.: Micropolar mixture models on the basis of the theory of porous media. In: Ehlers, W., Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. 121–145. Springer, Berlin (2002)Google Scholar
  62. 62.
    Diebels S., Steeb H.: Stress and couple stress in foams. Comput. Mater. Sci. 28, 714–722 (2003)CrossRefGoogle Scholar
  63. 63.
    Diepolder W., Mannl V., Lippmann H.: The Cosserat continuum, a model for grain rotations in metals. Int. J. Plasticity 7(4), 313–328 (2001)CrossRefGoogle Scholar
  64. 64.
    Dietsche A., Willam K.: Boundary effects in elasto-plastic Cosserat continua. Int. J. Solids Struct. 34(7), 877–893 (1997)MATHCrossRefGoogle Scholar
  65. 65.
    Dietsche A., Steinmann P., Willam K.: Micropolar elastoplasticity and its role in localization. Int. J. Plasticity 9(7), 813–831 (1993)MATHCrossRefGoogle Scholar
  66. 66.
    Dillard T., Forest S., Ienny P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A-Solids 25(3), 526–549 (2006)MATHCrossRefGoogle Scholar
  67. 67.
    Dłużevski P.H.: Finite deformations of polar elastic media. Int. J. Solids Struct. 30, 2277–2285 (1993)CrossRefGoogle Scholar
  68. 68.
    Dyszlewicz J.: Micropolar Theory of Elasticity. Springer, Berlin (2004)MATHGoogle Scholar
  69. 69.
    Ehlers W.: Theoretical and numerical modelling of granular liquid-saturated elasto-plastic porous media. ZAMM 77(Suppl. 2), S401–S404 (1997)MATHGoogle Scholar
  70. 70.
    Ehlers W.: On liquid-saturated and empty granular elasto-plastic solid materials accounting for micropolar rotations. In: Bruhns, O.T., Stein, E. (eds) IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity, pp. 271–280. Kluwer, Dordrecht (1998)Google Scholar
  71. 71.
    Ehlers W., Volk W.: On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mech. Cohesive-Frictional Mater. 2(4), 301–320 (1997)CrossRefGoogle Scholar
  72. 72.
    Ehlers W., Ramm E., Diebels S., d’Addetta G.D.A.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)MATHMathSciNetCrossRefGoogle Scholar
  73. 73.
    Erbay H.A.: An asymptotic theory of thin micropolar plates. Int. J. Eng. Sci. 38(13), 1497–1516 (2000)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Eremeyev V.A.: Acceleration waves in micropolar elastic media. Doklady Phys. 50(4), 204–206 (2005)CrossRefGoogle Scholar
  75. 75.
    Eremeyev V.A.: Nonlinear micropolar shells: theory and applications. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 11–18. Taylor & Francis, London (2005)Google Scholar
  76. 76.
    Eremeyev V.A., Pietraszkiewicz W.: The non-linear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)MATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Eremeyev V.A., Pietraszkiewicz W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)MATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    Eremeyev V.A., Pietraszkiewicz W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)MathSciNetGoogle Scholar
  79. 79.
    Eremeyev V.A., Zubov L.M.: On the stability of elastic bodies with couple stresses (in Russian). Mech. Solids 3, 181–190 (1994)Google Scholar
  80. 80.
    Eremeyev V.A., Zubov L.M.: On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87(2), 94–101 (2007)MATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    Eremeyev V.A., Zubov L.M.: Mechanics of Elastic Shells (in Russian). Nauka, Moscow (2008)Google Scholar
  82. 82.
    Ericksen J.L.: Wave propagation in thin elastic shells. J. Elast. 43(3), 167–178 (1971)MATHMathSciNetGoogle Scholar
  83. 83.
    Ericksen J.L.: The simplest problems for elastic Cosserat surfaces. J. Elast. 2(2), 101–107 (1972)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Ericksen J.L.: Symmetry transformations for thin elastic shells. Arch. Ration. Mech. Anal. 47, 1–14 (1972)MATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    Ericksen J.L.: Apparent symmetry of certain thin elastic shells. J. Mećanique 12, 12–18 (1973)MathSciNetGoogle Scholar
  86. 86.
    Ericksen J.L.: Plane infinitesimal waves in homogeneous elastic plates. J. Elast. 3(3), 161–167 (1973)MathSciNetCrossRefGoogle Scholar
  87. 87.
    Ericksen J.L.: Simpler problems for elastic Cosserat surfaces. J. Elast. 7(1), 1–11 (1977)MATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    Ericksen J.L.: Introduction to the Thermodynamics of Solids, 2nd edn. Springer, New York (1998)MATHGoogle Scholar
  89. 89.
    Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958)MATHMathSciNetCrossRefGoogle Scholar
  90. 90.
    Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966)MATHMathSciNetGoogle Scholar
  91. 91.
    Eringen A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966)MathSciNetGoogle Scholar
  92. 92.
    Eringen A.C.: Linear theory of micropolar viscoelasticity. Int. J. Eng. Sci. 5(2), 191–204 (1967)MATHCrossRefGoogle Scholar
  93. 93.
    Eringen A.C.: Theory of micropolar plates. ZAMP 18(1), 12–30 (1967)MathSciNetCrossRefGoogle Scholar
  94. 94.
    Eringen A.C.: A unified continuum theory of liquid crystals. ARI 73–84, 369–374 (1997)Google Scholar
  95. 95.
    Eringen A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999)Google Scholar
  96. 96.
    Eringen A.C.: Microcontinuum Field Theory. II. Fluent Media. Springer, New York (2001)Google Scholar
  97. 97.
    Eringen A.C., Maugin G.A.: Electrodynamics of Continua. Springer, New York (1990)Google Scholar
  98. 98.
    Erofeev V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  99. 99.
    Etse G., Nieto M.: Cosserat continua-based micro plane modelling. Theory and numerical analysis. Latin Am. Appl. Res. 34(4), 229–240 (2004)Google Scholar
  100. 100.
    Etse G., Nieto M., Steinmann P.: A micropolar microplane theory. Int. J. Eng. Sci. 41(13–14), 1631–1648 (2003)MathSciNetCrossRefGoogle Scholar
  101. 101.
    Farshad M., Tabarrok B.: Dualities in analysis of Cosserat plate. Mech. Res. Commun. 3(5), 399–406 (1976)MATHCrossRefGoogle Scholar
  102. 102.
    Fatemi J., Van Keulen F., Onck P.R.: Generalized continuum theories: application to stress analysis in bone. Meccanica 37(4–5), 385–396 (2002)MATHMathSciNetCrossRefGoogle Scholar
  103. 103.
    Forest S.: Modeling slip, kink and smear banding in classical and generalized single crystal plasticity. Acta Mater. 46(9), 3265–3281 (1998)CrossRefGoogle Scholar
  104. 104.
    Forest S., Sedláček R.: Plastic slip distribution in two-phase laminate microstructures: dislocation-based versus generalized continuum approaches. Philos. Mag. 83(2), 245–276 (2003)CrossRefGoogle Scholar
  105. 105.
    Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160(1–2), 71–111 (2003)MATHCrossRefGoogle Scholar
  106. 106.
    Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)MATHMathSciNetCrossRefGoogle Scholar
  107. 107.
    Forest S., Barbe F., Cailletaud G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37(46–47), 7105–7126 (2000)MATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    Forest S., Boubidi P., Sievert R.: Strain localization patterns at a crack tip in generalized single crystal plasticity. Scr. Mater. 44(6), 953–958 (2001)CrossRefGoogle Scholar
  109. 109.
    Fox D.D., Simo J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98(3), 329–343 (1992)MATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    Fox D.D., Raoult A., Simo J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124(2), 157–199 (1993)MATHMathSciNetCrossRefGoogle Scholar
  111. 111.
    Friesecke G., James R.D., Mora M.G., Müller S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Acad. Sci. Paris Ser. I 334, 173–178 (2002)MATHGoogle Scholar
  112. 112.
    Friesecke G., James R.D., Mora M.G., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. LV, 1461–1506 (2002)CrossRefGoogle Scholar
  113. 113.
    Friesecke G., James R.D., Mora M.G., Müller S.: The Föppl–von Karman plate theory as a low energy Gamma limit of nonlinear elasticity. C. R. Acad. Sci. Paris Ser. I 335, 201–206 (2002)MATHGoogle Scholar
  114. 114.
    Friesecke G., James R.D., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris Ser. I 336, 697–702 (2003)MATHGoogle Scholar
  115. 115.
    Gauthier R.D., Jahsman W.E.: Quest for micropolar elastic-constants. Trans. ASME J. Appl. Mech. 42(2), 369–374 (1975)Google Scholar
  116. 116.
    Gauthier R.D., Jahsman W.E.: Quest for micropolar elastic-constants. 2. Arch. Mech. 33(5), 717–737 (1981)MATHGoogle Scholar
  117. 117.
    Georgiadis H.G., Velgaki E.G.: High-frequency Rayleigh waves in materials with micro-structure and couple–stress effects. Int. J. Solids Struct. 40(10), 2501–2520 (2003)MATHCrossRefGoogle Scholar
  118. 118.
    Gevorkyan G.A.: The basic equations of flexible plates for a medium of Cosserat. Int. Appl. Mech. 3(11), 41–45 (1967)Google Scholar
  119. 119.
    Glockner P.G., Malcolm D.J.: Cosserat surface—model for idealized sandwich shells. ZAMM 54(4), T78 (1974)Google Scholar
  120. 120.
    Grammenoudis P., Tsakmakis C.: Hardening rules for finite deformation micropolar plasticity: restrictions imposed by the second law of thermodynamics and the postulate of Il’iushin. Contin. Mech. Thermodyn. 13(5), 325–363 (2001)MATHMathSciNetGoogle Scholar
  121. 121.
    Grammenoudis P., Tsakmakis C.: Finite element implementation of large deformation micropolar plasticity exhibiting isotropic and kinematic hardening effects. Int. J. Numer. Methods Eng. 62(12), 1691–1720 (2005)MATHCrossRefGoogle Scholar
  122. 122.
    Grammenoudis P., Tsakmakis C.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2053), 189–205 (2005)CrossRefGoogle Scholar
  123. 123.
    Grammenoudis P., Tsakmakis C.: Isotropic hardening in micropolar plasticity. Arch. Appl. Mech. 79(4), 323–334 (2009)CrossRefMATHGoogle Scholar
  124. 124.
    Green A.E., Naghdi P.M.: Linear theory of an elastic Cosserat plate. Proc. Camb. Philos. Soc. Math. Phys. Sci. 63(2), 537–550 (1967)CrossRefGoogle Scholar
  125. 125.
    Green A.E., Naghdi P.M.: Micropolar and director theories of plates. Q. J. Mech. Appl. Math. 20, 183–199 (1967)MATHCrossRefGoogle Scholar
  126. 126.
    Green A.E., Naghdi P.M.: The linear elastic Cosserat surface and shell theory. Int. J. Solids Struct. 4(6), 585–592 (1968)MATHCrossRefGoogle Scholar
  127. 127.
    Green A.E., Naghdi P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970)MATHCrossRefGoogle Scholar
  128. 128.
    Green A.E., Naghdi P.M.: On superposed small deformations on a large deformation of an elastic Cosserat surface. J. Elast. 1(1), 1–17 (1971)MathSciNetCrossRefGoogle Scholar
  129. 129.
    Green A.E., Naghdi P.M.: Derivation of shell theories by direct approach. Trans. ASME J. Appl. Mech. 41(1), 173–176 (1974)MATHMathSciNetGoogle Scholar
  130. 130.
    Green A.E., Naghdi P.M.: On thermal effects in the theory of shells. Proc. R. Soc. Lond. A 365A, 161–190 (1979)MathSciNetGoogle Scholar
  131. 131.
    Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)MATHMathSciNetCrossRefGoogle Scholar
  132. 132.
    Green A.E., Naghdi P.M., Wainwright W.L.: A general theory of a Cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965)MathSciNetCrossRefGoogle Scholar
  133. 133.
    Grekova E., Zhilin P.: Basic equations of Kelvins medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001)MATHMathSciNetCrossRefGoogle Scholar
  134. 134.
    Grigolyuk, E.I., Selezov, I.T.: Nonclassical theories of vibration of beams, plates and shells (in Russian). In: Itogi nauki i tekhniki, Mekhanika tverdogo deformiruemogo tela, vol. 5. VINITI, Moskva (1973)Google Scholar
  135. 135.
    Grioli G.: Elasticita asimmetrica. Ann. Math. Pura Appl. 50, 389–417 (1960)MATHMathSciNetCrossRefGoogle Scholar
  136. 136.
    Grioli G.: Contributo per una formulazione di tipo integrale della meccanica dei continui di Cosserat. Ann. Math. Pura Appl. 111(1), 389–417 (1976)MathSciNetCrossRefGoogle Scholar
  137. 137.
    Günther W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweigschen Wissenschaftlichen Gesellschaft Göttingen 10, 196–213 (1958)Google Scholar
  138. 138.
    Gürgöze dT.: Thermostatics of an elastic Cosserat plate containing a circular hole. Proc. Camb. Philos. Soc. Math. Phys. Sci. 70(JUL), 169–174 (1971)CrossRefGoogle Scholar
  139. 139.
    Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MATHMathSciNetCrossRefGoogle Scholar
  140. 140.
    Hamel G.: Elementare Mechanik: ein Lehrbuch enthaltend: eine Begründung der allgemeinen Mechanik, die Mechanik der Systeme starrer Körper, die synthetischen und die Elemente der analytischen Methoden, sowie eine Einführung in die Prinzipien der Mechanik deformierbarer Systeme. Teubner, Leipzig (1912)Google Scholar
  141. 141.
    Hamel G.: Theoretische Mechanik: eine einheitliche Einführung in die gesamte Mechanik. Springer, Berlin (1949)MATHGoogle Scholar
  142. 142.
    Harris D., Grekova E.F.: A hyperbolic well-posed model for the flow of granular materials. J. Eng. Math. 52(1–3), 107–135 (2005)MATHMathSciNetGoogle Scholar
  143. 143.
    Herglotz G.: Vorlesungen über Mechanik der Kontinua, Teubner-Archiv zur Mathematik, vol. 3. B.G. Teubner, Leipzig (1985)Google Scholar
  144. 144.
    Hodges D.H., Atilgan A.R., Danielson D.A.: A geometrically nonlinear theory of elastic plates. Trans. ASME J. Appl. Mech. 60(1), 109–116 (2004)Google Scholar
  145. 145.
    Huang W.X., Bauer E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Methods Geomech. 27(4), 325–352 (2003)MATHCrossRefGoogle Scholar
  146. 146.
    Ieşan D.: On the linear theory of micropolar elasticity. Int. J. Eng. Sci. 7(12), 1213–1220 (1969)MATHCrossRefGoogle Scholar
  147. 147.
    Ieşan D.: Saint-Venant’s Problem. Lecture Notes in Mathematics. Springer, Berlin (1987)Google Scholar
  148. 148.
    Itou S., Atsumi A.: Effect of couple–stresses on elastic Cosserat plate with loads travelling at uniform velocity along bounding surfaces. Archiwum Mechaniki Stosowanej 22(4), 375–384 (1970)MATHGoogle Scholar
  149. 149.
    Ivanova E.A., Krivtsov A.M., Morozov N.F., Firsova A.D.: Description of crystal packing of particles with torque interaction. Mech. Solids 38(4), 76–88 (2003)Google Scholar
  150. 150.
    Ivanova E.A., Krivtsov A.M., Morozov N.F., Firsova A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Doklady Phys. 48(8), 455–458 (2003)CrossRefGoogle Scholar
  151. 151.
    Jemielita G.: Rotational representation of a plate made of Grioli–Toupin material. Trans. ASME J. Appl. Mech. 62(2), 414–418 (1995)MATHCrossRefGoogle Scholar
  152. 152.
    Jog C.S.: Higher-order shell elements based on a Cosserat model, and their use in the topology design of structures. Comput. Methods Appl. Mech. Eng. 193(23–26), 2191–2220 (2004)MATHCrossRefGoogle Scholar
  153. 153.
    Kafadar C.B., Eringen A.C.: Micropolar media—I. The classical theory. Int. J. Eng. Sci. 9, 271–305 (1971)CrossRefGoogle Scholar
  154. 154.
    Kafadar C.B., Eringen A.C.: Polar field theories. In: Eringen, A.C. (eds) Continuum Physics, vol. IV, pp. 1–75. Academic Press, New York (1976)Google Scholar
  155. 155.
    Kaplunov J.D., Lippmann H.: Elastic-plastic torsion of a Cosserat-type rod. Acta Mech. 113(1–4), 53–63 (1995)MATHMathSciNetCrossRefGoogle Scholar
  156. 156.
    Kayuk Y.F., Zhukovskii A.P.: Theory of plates and shells based on the concept of Cosserat surfaces. Int. Appl. Mech. 17(10), 922–926 (1981)Google Scholar
  157. 157.
    Keller I.E., Trusov P.V.: Fragmentation of metals at high strains: a mechanism of formation of spatially-modulated vortex structures. J. Appl. Mech. Tech. Phys. 43(2), 320–327 (2002)CrossRefGoogle Scholar
  158. 158.
    Kienzler R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)MATHCrossRefGoogle Scholar
  159. 159.
    Kienzler, R., Altenbach, H., Ott, I. (eds.): Critical Review of the Theories of Plates and Shells, New Applications. Lecture Notes in Applied and Computational Mechanics, vol. 16. Springer, Berlin (2004)Google Scholar
  160. 160.
    Kirchhoff G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik 40, 51–88 (1850)MATHCrossRefGoogle Scholar
  161. 161.
    Koiter W.T.: Couple–stresses in the theory of elasticity Pt. I–II. Proc. Koninkl. Neterland Akad. Wetensh B 67, 17–44 (1964)MATHGoogle Scholar
  162. 162.
    Konopińska V., Pietraszkiewicz W.: Exact resultant equilibrium conditions in the non-linear theory of branched and self-intersecting shells. Int. J. Solids Struct. 44(1), 352–369 (2006)CrossRefGoogle Scholar
  163. 163.
    Korman T., Morghem F.T., Baluch M.H.: Bending of micropolar plates. Nuclear Eng. Des. 26(3), 432–439 (1974)CrossRefGoogle Scholar
  164. 164.
    Kotera H., Sawada M., Shima S.: Magnetic Cosserat continuum theory to simulate behavior of magnetic powder during compaction in applied magnetic field. Metals Mater. Korea 4(3), 354–358 (1998)Google Scholar
  165. 165.
    Kotera H., Sawada M., Shima S.: Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. Int. J. Mech. Sci. 42(1), 129–145 (2000)MATHCrossRefGoogle Scholar
  166. 166.
    Kratochvil J., Labbe E., Rey C., Yang S.: On physically motivated mesoscale Cosserat model of shear band formation. Scr. Mater. 41(7), 761–766 (1999)CrossRefGoogle Scholar
  167. 167.
    Kreja, I.: Geometrically non-linear analysis of layered composite plates and shells. Gdaǹsk University of Technology, Gdaǹsk (2007)Google Scholar
  168. 168.
    Krishnaswamy S., Jin Z.H., Batra R.C.: Stress concentration in an elastic Cosserat plate undergoing extensional deformations. Trans. ASME J. Appl. Mech. 65(1), 66–70 (1998)Google Scholar
  169. 169.
    Kröner, E. (ed.): Mechanics of generalized continua. In: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany), 1967, vol. 16. Springer, Berlin (1968)Google Scholar
  170. 170.
    Kumar R., Deswal S.: Some problems of wave propagation in a micropolar elastic medium with voids. J. Vib. Control 12(8), 849–879 (2006)CrossRefMATHGoogle Scholar
  171. 171.
    Kumar R., Partap G.: Rayleigh Lamb waves in micropolar isotropic elastic plate. Appl. Math. Mech. 27(8), 1049–1059 (2006)MATHMathSciNetCrossRefGoogle Scholar
  172. 172.
    Kumar R., Partap G.: Axisymmetric free vibrations of infinite micropolar thermoelastic plate. Appl. Math. Mech. 28(3), 369–383 (2007)MATHMathSciNetCrossRefGoogle Scholar
  173. 173.
    Kurlandz Z.T.: Derivation of linear shell theory from theory of Cosserat medium. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 20(10), 789–794 (1972)MathSciNetGoogle Scholar
  174. 174.
    Kurlandz Z.T.: Anisotropic linear Cosserat surface and linear shell theory. Arch. Mech. 25(4), 613–620 (1973)Google Scholar
  175. 175.
    Lakes R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)CrossRefGoogle Scholar
  176. 176.
    Lakes R.S.: Experimental micro mechanics methods for conventional and negative Poisson’s ratio cellular solids as Cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991)CrossRefGoogle Scholar
  177. 177.
    Lakes R.S.: Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Mühlhaus, H. (eds) Continuum Models for Materials with Micro-Structure, pp. 1–22. Wiley, New York (1995)Google Scholar
  178. 178.
    Larsson R., Diebels S.: A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2007)MathSciNetCrossRefGoogle Scholar
  179. 179.
    Larsson R., Zhang Y.: Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. J. Mech. Phys. Solids 55(4), 819–841 (2007)MATHMathSciNetCrossRefGoogle Scholar
  180. 180.
    Levinson M.: An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Comm. 7(6), 343–350 (1980)MATHCrossRefGoogle Scholar
  181. 181.
    Li L., Xie S.S.: Finite element method for linear micropolar elasticity and numerical study of some scale effects phenomena in MEMS. Int. J. Mech. Sci. 46(11), 1571–1587 (2004)MATHCrossRefGoogle Scholar
  182. 182.
    Libai A., Simmonds J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271–371 (1983)MATHCrossRefGoogle Scholar
  183. 183.
    Libai A., Simmonds J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  184. 184.
    Lippmann H.: Eine Cosserat-Theorie des plastischen Fließens. Acta Mech. 8(3–4), 93–113 (1969)Google Scholar
  185. 185.
    Lippmann H.: Plasticity in rock mechanics. Int. J. Mech. Sci. 13(4), 291–297 (1971)CrossRefGoogle Scholar
  186. 186.
    Lippmann H.: Plasticity in rock mechanics. Mech. Res. Commun. 11(3), 177–184 (1984)MATHCrossRefGoogle Scholar
  187. 187.
    Lippmann H.: Velocity field equations and strain localization. Int. J. Solids Struct. 22(12), 1399–1409 (1986)MATHCrossRefGoogle Scholar
  188. 188.
    Lippmann H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48(11), 753–762 (1995)CrossRefGoogle Scholar
  189. 189.
    Lubowiecka I., Chróścielewski J.: On dynamics of flexible branched shell structures undergoing large overall motion using finite elements. Comput. Struct. 80, 891–898 (2002)CrossRefGoogle Scholar
  190. 190.
    Maier T.: Comparison of non-local and polar modelling of softening in hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 28(3), 251–268 (2004)MATHCrossRefGoogle Scholar
  191. 191.
    Makowski, J., Pietraszkiewicz, W.: Thermomechanics of shells with singular curves. Zesz. Nauk. No 528/1487/2002, Gdańsk (2002)Google Scholar
  192. 192.
    Makowski J., Stumpf H.: Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct. 26, 353–368 (1990)MATHMathSciNetCrossRefGoogle Scholar
  193. 193.
    Makowski J., Pietraszkiewicz W., Stumpf H.: Jump conditions in the nonlinear theory of thin irregular shells. J. Elast. 54, 1–26 (1999)MATHMathSciNetCrossRefGoogle Scholar
  194. 194.
    Malcolm D.J., Glockner P.G.: Cosserat surface and sandwich shell equilibrium. Trans. ASCE J. Eng. Mech. Div. 98(EM5), 1075–1086 (1972)Google Scholar
  195. 195.
    Malcolm D.J., Glockner P.G.: Nonlinear sandwich shell and Cosserat surface theory. Trans. ASCE J. Eng. Mech. Div. 98(EM5), 1183–1203 (1972)Google Scholar
  196. 196.
    Manzari M.T.: Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Methods Geomech. 28(10), 1011–1032 (2004)MATHCrossRefGoogle Scholar
  197. 197.
    Matsushima T., Saomoto H., Tsubokawa Y., Yamada Y.: Grain rotation versus continuum rotation during shear deformation of granular assembly. Soils Found. 43(4), 95–106 (2003)Google Scholar
  198. 198.
    Maugin G.A.: Acceleration waves in simple and linear viscoelastic micropolar materials. Int. J. Eng. Sci. 12, 143–157 (1974)MATHCrossRefGoogle Scholar
  199. 199.
    Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Oxford (1988)MATHGoogle Scholar
  200. 200.
    Maugin G.A.: On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond. A 356, 1367–1395 (1998)MATHMathSciNetCrossRefGoogle Scholar
  201. 201.
    Migoun, N.P., Prokhorenko, P.P.: Hydrodynamics and Heattransfer in Gradient Flows of Microstructured Fluids (in Russian). Nauka i Technika, Minsk (1984)Google Scholar
  202. 202.
    Mindlin R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Trans. ASME J. Appl. Mech. 18, 31–38 (1951)MATHGoogle Scholar
  203. 203.
    Mindlin R.D., Tiersten H.F.: Effects of couple–stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MATHMathSciNetCrossRefGoogle Scholar
  204. 204.
    Mora R., Waas A.M.: Measurement of the Cosserat constant of circular-cell polycarbonate honeycomb. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 80(7), 1699–1713 (2000)Google Scholar
  205. 205.
    Mori K., Shiomi M., Osakada K.: Inclusion of microscopic rotation of powder particles during compaction in finite element method using Cosserat continuum theory. Int. J. Numer. Methods Eng. 42(5), 847–856 (1998)MATHCrossRefGoogle Scholar
  206. 206.
    Murdoch A.I., Cohen H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72(1), 61–98 (1979)MATHMathSciNetCrossRefGoogle Scholar
  207. 207.
    Murdoch A.I., Cohen H.: Symmetry considerations for material surfaces. Addendum. Arch. Ration. Mech. Anal. 76(4), 393–400 (1979)MathSciNetGoogle Scholar
  208. 208.
    Naghdi P.: The theory of plates and shells. In: Flügge, S. (eds) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)Google Scholar
  209. 209.
    Naghdi P.: On the formulation of contact problems of shells and plates. J. Elast. 5(3–4), 379–398 (1975)MATHMathSciNetCrossRefGoogle Scholar
  210. 210.
    Naghdi P., Rubin M.B.: Restrictions on nonlinear constitutive equations for elastic shells. J. Elast. 39, 133–163 (1995)MATHMathSciNetCrossRefGoogle Scholar
  211. 211.
    Naghdi P., Trapp J.A.: A uniqueness theorem in the theory of Cosserat surface. J. Elast. 2(1), 9–20 (1972)MathSciNetCrossRefGoogle Scholar
  212. 212.
    Naghdi P.M., Srinivasa A.R.: A dynamical theory of structured solids. 1. Basic developments. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 345(1677), 425–458 (1993)MATHMathSciNetCrossRefGoogle Scholar
  213. 213.
    Nardinocchi R., Podio-Guidugli P.: The equations of Reissner–Mindlin plates obtained by the method of internal constraints. Meccanica 29, 143–157 (1994)MATHCrossRefGoogle Scholar
  214. 214.
    Naue G.: Kontinuumsbegriff und Erhaltungssätze in der Mechanik seit Leonard Euler. Tech. Mech. 5(4), 62–66 (1984)Google Scholar
  215. 215.
    Nazarov S.A.: Asymptotic behavior of the solution of an elliptic boundary value problem in a thin domain. J. Math. Sci. 64(6), 1351–1362 (1993)CrossRefGoogle Scholar
  216. 216.
    Neff P.: A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16(6), 577–628 (2004)MATHMathSciNetCrossRefGoogle Scholar
  217. 217.
    Neff P.: The Γ-limit of a finite strain Cosserat model for asymptotically thin domains and a consequence for the Cosserat couple modulus. Proc. Appl. Math. Mech. 5(1), 629–630 (2005)CrossRefGoogle Scholar
  218. 218.
    Neff P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)MathSciNetCrossRefGoogle Scholar
  219. 219.
    Neff P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. ZAMM 86(11), 892–912 (2006)MATHMathSciNetCrossRefGoogle Scholar
  220. 220.
    Neff P.: A geometrically exact planar Cosserat shell-model with microstructure: existence of minimizers for zero Cosserat couple modulus. Math. Models Methods Appl. Sci. 17(3), 363–392 (2007)MATHMathSciNetCrossRefGoogle Scholar
  221. 221.
    Neff P., Chełmiński K.: Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate independent case. Proc. R. Soc. Edinb. A Math. 135, 1017–1039 (2005)MATHCrossRefGoogle Scholar
  222. 222.
    Neff P., Chełmiński K.: A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Γ-convergence. Interfaces Free Boundaries 9, 455–492 (2007)MATHCrossRefGoogle Scholar
  223. 223.
    Neff P., Chełmiński K.: Well-posedness of dynamic Cosserat plasticity. Appl. Math. Optim. 56(1), 19–35 (2007)MATHMathSciNetCrossRefGoogle Scholar
  224. 224.
    Neff P., Jeong J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. ZAMM 89(2), 107–122 (2009)MATHMathSciNetCrossRefGoogle Scholar
  225. 225.
    Neff P., Knees D.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40(1), 21–43 (2008)MATHMathSciNetCrossRefGoogle Scholar
  226. 226.
    Neff P., Chełmiński K., Mueller W., Wieners C.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17(8), 1211–1239 (2007)MATHMathSciNetCrossRefGoogle Scholar
  227. 227.
    Nicotra V., Podio-Guidugli P., Tiero A.: Exact equilibrium solutions for linearly elastic plate-like bodies. J. Elast. 56, 231–245 (1999)MATHMathSciNetCrossRefGoogle Scholar
  228. 228.
    Nikitin E., Zubov L.M.: Conservation laws and conjugate solutions in the elasticity of simple materials and materials with couple stress. J. Elast. 51, 1–22 (1998)MATHMathSciNetCrossRefGoogle Scholar
  229. 229.
    Nistor I.: Variational principles for Cosserat bodies. Int. J. Non-Linear Mech. 37, 565–569 (2002)MATHMathSciNetCrossRefGoogle Scholar
  230. 230.
    Noor A.K.: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 43, 223–234 (1990)Google Scholar
  231. 231.
    Noor A.K.: List of books, monographs, and survey papers on shells. In: Noor, A.K., Belytschko, T., Simo, J.C. (eds) Analytical and Computational Models of Shells, CED, vol. 3, pp. vii–xxxiv. ASME, New York (2004)Google Scholar
  232. 232.
    Nowacki W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford (1986)MATHGoogle Scholar
  233. 233.
    Nowacki W., Nowacki W.K.: Propagation of monochromatic waves in an infinite micropolar elastic plate. Bulletin de l’Academie Polonaise des Sciences Serie des Sciences Techniques 17(1), 45–53 (1969)MATHMathSciNetGoogle Scholar
  234. 234.
    Pal’mov V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Mech. Math. 28(3), 496–505 (1964)MathSciNetCrossRefGoogle Scholar
  235. 235.
    Pal’mov V.A.: The plane problem in the theory of nonsymmetrical elasticity. J. Appl. Mech. Math. 28(6), 1341–1345 (1964)MATHMathSciNetCrossRefGoogle Scholar
  236. 236.
    Pal’mov V.A.: Contribution to Cosserat’s theory of plates (in Russian). Trudy LPI 386, 3–8 (1982)Google Scholar
  237. 237.
    Palmow W.A., Altenbach H.: Über eine Cosseratsche Theorie für elastische Platten. Technische Mechanik 3(3), 5–9 (1982)Google Scholar
  238. 238.
    Papanastasiou P.: Localization of deformation and failure around elliptical perforations based on a polar continuum. Comput. Mech. 26(4), 352–361 (2000)MATHCrossRefGoogle Scholar
  239. 239.
    Park H.C., Lakes R.S.: Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. J. Biomech. 19, 385–397 (1986)CrossRefGoogle Scholar
  240. 240.
    Pietraszkiewicz W.: Consistent second approximation to the elastic strain energy of a shell. ZAMM 59, 206–208 (1979)MathSciNetGoogle Scholar
  241. 241.
    Pietraszkiewicz, W.: Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Polish Scientific Publishers, Warszawa-Poznań (1979)Google Scholar
  242. 242.
    Pietraszkiewicz W.: Addendum to: Bibliography of monographs and surveys on shells. Appl. Mech. Rev. 45, 249–250 (1992)MathSciNetCrossRefGoogle Scholar
  243. 243.
    Pietraszkiewicz W.: Teorie nieliniowe powłok. In: Woźniak, C. (eds) Mechanika sprȩżystych płyt i powłok, pp. 424–497. PWN, Warszawa (2001)Google Scholar
  244. 244.
    Pietraszkiewicz W., Badur J.: Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097–1115 (1983)MATHMathSciNetCrossRefGoogle Scholar
  245. 245.
    Pietraszkiewicz W., Eremeyev V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)MathSciNetCrossRefGoogle Scholar
  246. 246.
    Pietraszkiewicz W., Eremeyev V.A.: On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009)MathSciNetCrossRefGoogle Scholar
  247. 247.
    Pietraszkiewicz W., Chróścielewski J., Makowski J.: On dynamically and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak, C. (eds) Shell Structures: Theory and Applications, pp. 163–167. Taylor & Francis, London (2005)Google Scholar
  248. 248.
    Pietraszkiewicz W., Eremeyev V.A., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2), 150–159 (2007)MATHMathSciNetCrossRefGoogle Scholar
  249. 249.
    Podio-Guidugli P.: An exact derivation of the thin plate equation. J. Elast. 22, 121–133 (1989)MATHMathSciNetCrossRefGoogle Scholar
  250. 250.
    Pompei A., Rigano M.A.: On the bending of micropolar viscoelastic plates. Int. J. Eng. Sci. 44(18–19), 1324–1333 (2006)MathSciNetCrossRefGoogle Scholar
  251. 251.
    Provan J.W., Koeller R.C.: On the theory of elastic plates. Int. J. Solids Struct. 6(7), 933–950 (1970)MATHCrossRefGoogle Scholar
  252. 252.
    Ramezani S., Naghdabadi R.: Energy pairs in the micropolar continuum. Int. J. Solids Struct. 44, 4810–4818 (2007)MATHCrossRefGoogle Scholar
  253. 253.
    Ramsey H.: Comparison of buckling deformations in compressed elastic Cosserat plates with three-dimensional plates. Int. J. Solids Struct. 22(3), 257–266 (1986)MATHCrossRefGoogle Scholar
  254. 254.
    Ramsey H.: Axisymmetrical buckling of a cylindrical elastic Cosserat shell under axial-compression. Q. J. Mech. Appl. Math. 40(3), 415–429 (1987)MATHCrossRefGoogle Scholar
  255. 255.
    Reddy J.N.: A simple higher-order theory for laminated composite plates. Trans. ASME J. Appl. Mech. 51, 745–752 (1984)MATHCrossRefGoogle Scholar
  256. 256.
    Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–194 (1944)MATHMathSciNetGoogle Scholar
  257. 257.
    Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12(11), A69–A77 (1945)MathSciNetGoogle Scholar
  258. 258.
    Reissner E.: On bending of elastic plates. Q. Appl. Math. 5, 55–68 (1947)MATHMathSciNetGoogle Scholar
  259. 259.
    Reissner E.: A note on pure bending and flexure in plane stress including the effect of moment stresses. Arch. Mech. 28(6), 633–642 (1970)Google Scholar
  260. 260.
    Reissner E.: On sandwich-type plates with cores capable of supporting moment stresses. Acta Mech. 14(1), 43–51 (1972)MATHCrossRefGoogle Scholar
  261. 261.
    Reissner E.: On kinematics and statics of finite-strain force and moment stress elasticity. Stud. Appl. Math. 52, 93–101 (1973)Google Scholar
  262. 262.
    Reissner E.: Note on the equations of finite-strain force and moment stress elasticity. Stud. Appl. Math. 54, 1–8 (1975)MATHMathSciNetGoogle Scholar
  263. 263.
    Reissner E.: A note on generating generalized two-dimensional plate and shell theories. ZAMP 28, 633–642 (1977)MATHCrossRefGoogle Scholar
  264. 264.
    Reissner E.: Reflection on the theory of elastic plates. Appl. Mech. Rev. 38(11), 1453–1464 (1985)CrossRefGoogle Scholar
  265. 265.
    Reissner E.: A further note on the equations of finite-strain force and moment stress elasticity. ZAMP 38, 665–673 (1987)MATHCrossRefGoogle Scholar
  266. 266.
    Ristinmaa M., Vecchi M.: Use of couple–stress theory in elasto-plasticity. Comput. Methods Appl. Mech. Eng. 136(3–4), 205–224 (1996)MATHCrossRefGoogle Scholar
  267. 267.
    Rothert H.: Lineare konstitutive Gleiehungen der viskoelastischen Cosseratfläche. ZAMM 55, 647–656 (1975)MATHCrossRefGoogle Scholar
  268. 268.
    Rothert H.: Lösungsmöglichkeiten des Umkehrproblems viskoelastischer Cosseratfächen. ZAMM 57, 429–437 (1977)MATHMathSciNetCrossRefGoogle Scholar
  269. 269.
    Rubin M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  270. 270.
    Rubin M.B.: Restrictions on linear constitutive equations for a rigid heat conducting Cosserat shell. Int. J. Solids Struct. 41(24–25), 7009–7033 (2004)MATHCrossRefGoogle Scholar
  271. 271.
    Rubin M.B.: Numerical solution of axisymmetric nonlinear elastic problems including shells using the theory of a Cosserat point. Comput. Mech. 36(4), 266–288 (2005)MATHCrossRefGoogle Scholar
  272. 272.
    Rubin M.B., Benveniste Y.: A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52(5), 1023–1052 (2004)MATHMathSciNetCrossRefGoogle Scholar
  273. 273.
    Sansour C.: A theory of the elasto-viscoplastic Cosserat continuum. Arch. Mech. 50, 577–597 (1998)MATHGoogle Scholar
  274. 274.
    Sansour C., Bednarczyk H.: The Cosserat surface as a shell-model, theory and finite-element formulation. Comput. Methods Appl. Mech. Eng. 120(1–2), 1–32 (1995)MATHMathSciNetCrossRefGoogle Scholar
  275. 275.
    Sargsyan S.O.: On some interior and boundary effects in thin plates based on the asymmetric theory of elasticity. In: Kienzler, R., Altenbach, H., Ott, I. (eds) Theories of Plates and Shells: Critical Review and New Applications, pp. 201–210. Springer, Berlin (2005)Google Scholar
  276. 276.
    Sargsyan S.O.: Boundary-value problems of the asymmetric theory of elasticity for thin plates. J. Appl. Math. Mech. 72(1), 77–86 (2008)MathSciNetCrossRefGoogle Scholar
  277. 277.
    Sawczuk A.: On the yielding of Cosserat continua. Arch. Mech. 19, 471–480 (1967)MATHGoogle Scholar
  278. 278.
    Schaefer H.: Das Cosserat-Kontinuum. ZAMM 47(8), 485–498 (1967)MATHCrossRefGoogle Scholar
  279. 279.
    Schiavone P.: On existence theorems in the theory of extensional motions of thin micropolar plates. Int. J. Eng. Sci. 27(9), 1129–1133 (1989)MATHMathSciNetCrossRefGoogle Scholar
  280. 280.
    Schiavone P.: Uniqueness in dynamic problems of thin micropolar plates. Appl. Math. Lett. 4(2), 81–83 (1991)MATHMathSciNetCrossRefGoogle Scholar
  281. 281.
    Schiavone P., Constanda C.: Existence theorems in the theory of bending of micropolar plates. Int. J. Eng. Sci. 27(4), 463–468 (1989)MATHMathSciNetCrossRefGoogle Scholar
  282. 282.
    Sedláček R., Forest S.: Non-local plasticity at microscale: a dislocation-based and a Cosserat model. Phys. Status Solidi B Basic Res. 221(2), 583–596 (2000)CrossRefGoogle Scholar
  283. 283.
    Sekine K.: Cosserat theory of crystal plasticity with application to analysis of lattice rotations under constrained deformation. J. Japan Inst. Metals 41(9), 874–882 (1977)Google Scholar
  284. 284.
    Sharbati E., Naghdabadi R.: Computational aspects of the Cosserat finite element analysis of localization phenomena. Comput. Mater. Sci. 38(2), 303–315 (2006)CrossRefGoogle Scholar
  285. 285.
    Shkutin L.I.: Nonlinear models of deformable momental continua (in Russian). J. Appl. Mech. Tech. Phys. 6, 111–117 (1980)MathSciNetGoogle Scholar
  286. 286.
    Shkutin L.I.: Mechanics of Deformations of Flexible Bodies (in Russian). Nauka, Novosibirsk (1985)Google Scholar
  287. 287.
    Sievert R., Forest S., Trostel R.: Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity. J. Phys. IV 8(P8), 357–364 (1998)Google Scholar
  288. 288.
    Simmonds J.G.: The thermodynamical theory of shells: descent from 3-dimensions without thickness expansions. In: Axelrad, E.K., Emmerling, F.A. (eds) Flexible Shells, Theory and Applications, pp. 1–11. Springer, Berlin (1984)Google Scholar
  289. 289.
    Simmonds, J.G.: Some comments on the status of shell theory at the end of the 20th century: complaints and correctives. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 38th, and AIAA/ASME/AHS Adaptive Structures Forum, Kissimmee, FL, April 7–10, 1997. Collection of Technical Papers, Pt. 3 (A97-24112 05-39), AIAA, pp. 1912–1921 (1997)Google Scholar
  290. 290.
    Simmonds J.G., Danielson D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. Trans. ASME J. Appl. Mech. 39(4), 1085–1090 (1972)MATHGoogle Scholar
  291. 291.
    van der Sluis O., Vosbeek P.H.J., Schreurs P.J.G., Meijer H.E.H.: Homogenization of heterogeneous polymers. Int. J. Solids Struct. 36(21), 3193–3214 (1999)MATHCrossRefGoogle Scholar
  292. 292.
    Steinmann P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)MATHMathSciNetCrossRefGoogle Scholar
  293. 293.
    Steinmann P.: Theorie endlicher mikropolarer Elasto-Plasticität. ZAMM 74(4), T245–T247 (1994)Google Scholar
  294. 294.
    Steinmann P., Stein E.: A uniform treatment of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997)MATHMathSciNetCrossRefGoogle Scholar
  295. 295.
    Stojanović, R. (eds): Mechanics of Polar Continua, Theory and Applications. Springer, Wien (1969)Google Scholar
  296. 296.
    Stojanović R.: Nonlinear micropolar elasticity. In: Nowacki, W., Olszak, W. (eds) Micropolar Elasticity, pp. 73–103. Springer, Wien (1972)Google Scholar
  297. 297.
    Suiker A.S.J., DeBorst R., Chang C.S.: Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory. Acta Mech. 149, 161–180 (2001)MATHCrossRefGoogle Scholar
  298. 298.
    Swift H.W.: Length changes in metals under torsional overstrain. Engineering 163, 253–257 (1947)Google Scholar
  299. 299.
    Tejchman J., Bauer E.: Modeling of a cyclic plane strain compression-extension test in granular bodies within a polar hypoplasticity. Granul. Matter 7, 227–242 (2005)MATHCrossRefGoogle Scholar
  300. 300.
    Tejchman J., Wu W.: Numerical study on sand and steel interfaces. Mech. Res. Commun. 21(2), 109–119 (1994)MATHCrossRefGoogle Scholar
  301. 301.
    Tejchman J., Wu W.: Experimental and numerical study of sand-steel interfaces. Int. J. Numer. Anal. Methods Geomech. 19(8), 513–536 (1995)CrossRefGoogle Scholar
  302. 302.
    Timoshenko S.P., Woinowsky-Krieger S.: Theory of Plates and Shells. McGraw Hill, New York (1985)Google Scholar
  303. 303.
    Tomar S.K.: Wave propagation in a micropolar elastic plate with voids. J. Vib. Control 11(6), 849–863 (2005)CrossRefMATHGoogle Scholar
  304. 304.
    Toupin R.A.: Elastic materials with couple–stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MATHMathSciNetCrossRefGoogle Scholar
  305. 305.
    Toupin R.A.: Theories of elasticity with couple–stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)MATHMathSciNetCrossRefGoogle Scholar
  306. 306.
    Trovalusci P., Masiani R.: Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int. J. Solids Struct. 40(5), 1281–1297 (2003)MATHCrossRefGoogle Scholar
  307. 307.
    Truesdell C.: Die Entwicklung des Drallsatzes. ZAMM 44(4/5), 149–158 (1964)MATHMathSciNetGoogle Scholar
  308. 308.
    Truesdell C., Noll W.: The nonlinear field theories of mechanics. In: Flügge, S. (eds) Handbuch der Physik, vol. III/3, pp. 1–602. Springer, Berlin (1965)Google Scholar
  309. 309.
    Truesdell C., Toupin R.: The classical field theories. In: Flügge, S. (eds) Handbuch der Physik, vol. III/1, pp. 226–793. Springer, Berlin (1960)Google Scholar
  310. 310.
    Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. Key Eng. Mater. 180, 13–22 (2000)CrossRefGoogle Scholar
  311. 311.
    Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. Int. J. Mech. Sci. 43(9), 1969–1983 (2001)MATHCrossRefGoogle Scholar
  312. 312.
    Truong H.P.Q., Lippmann H.: Plastic spin and evolution of an anisotropic yield condition. J. Mech. Phys. Solids 49(1), 2577–2591 (2001)MATHCrossRefGoogle Scholar
  313. 313.
    Turner J.R., Nicol D.A.C.: The Signorini problem for a Cosserat plate. J. Inst. Math. Appl. 25(2), 133–145 (1980)MATHMathSciNetCrossRefGoogle Scholar
  314. 314.
    Walsh S.D.C., Tordesillas A.: A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167, 145–169 (2004)MATHCrossRefGoogle Scholar
  315. 315.
    Wang C.M., Reddy J.N., Lee K.H.: Shear Deformable Beams and Shells. Elsevier, Amsterdam (2000)Google Scholar
  316. 316.
    Wang F.Y.: On the solutions of Eringen’s micropolar plate equations and of other approximate equations. Int. J. Eng. Sci. 28(9), 919–925 (1990)MATHCrossRefGoogle Scholar
  317. 317.
    Wang F.Y., Zhou Y.: On the vibration modes of three-dimensional micropolar elastic plates. J. Sound Vib. 146(1), 1–16 (1991)CrossRefGoogle Scholar
  318. 318.
    Wierzbicki E., Wozniak C.: On the dynamics of combined plane periodic structures. Arch. Appl. Mech. 70(6), 387–398 (2000)MATHCrossRefGoogle Scholar
  319. 319.
    Wilson E.B.: Vector Analysis, Founded upon the Lectures of J. W. Gibbs. Yale University Press, New Haven (1901)Google Scholar
  320. 320.
    Woźniak C. (eds): Mechanika spŗeżystych płyt i powłok. PWN, Warszawa (2001)Google Scholar
  321. 321.
    Xiao H.: On symmetries and anisotropies of classical and micropolar linear elasticities: a new method based upon a complex vector basis and some systematic results. J. Elast. 49, 129–162 (1998)MATHCrossRefGoogle Scholar
  322. 322.
    Yang H.T.Y., Saigal S., Masud A., Kapania R.K.: A survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47(1–3), 101–127 (2000)MATHMathSciNetCrossRefGoogle Scholar
  323. 323.
    Yeremeyev V.A., Zubov L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755–767 (1999)MathSciNetCrossRefGoogle Scholar
  324. 324.
    Zervos A., Vardoulakis I., Jean M., Lerat P.: Numerical investigation of granular interfaces kinematics. Mech. Cohesive-frictional Mater. 5(4), 305–324 (2000)CrossRefGoogle Scholar
  325. 325.
    Zhang H.W., Wang H., Wriggers P., Schrefler B.A.: A finite element model for contact analysis of multiple Cosserat bodies. Comput. Mech. 36(6), 444–458 (2005)MATHCrossRefGoogle Scholar
  326. 326.
    Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)MathSciNetCrossRefGoogle Scholar
  327. 327.
    Zhilin, P.A.: Applied Mechanics. Foundations of the Theory of Shells (in Russian). St. Petersburg State Polytechnical University, Saint Petersburg (2006)Google Scholar
  328. 328.
    Zubov L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)MATHGoogle Scholar
  329. 329.
    Zubov L.M.: Nonlinear theory of isolated and continuosly distributed dislocations in elastic shells. Arch. Civil Eng. XLV(2), 385–396 (1999)Google Scholar
  330. 330.
    Zubov L.M.: Semi-inverse solutions in nonlinear theory of elastic shells. Arch. Mech. 53(4–5), 599–610 (2001)MATHMathSciNetGoogle Scholar
  331. 331.
    Zubov L.M.: Continuously distributed dislocations and disclinations in nonlinearly elastic micropolar media. Doklady Phys. 49(5), 308–310 (2004)MathSciNetCrossRefGoogle Scholar
  332. 332.
    Zubov L.M., Eremeev V.A.: Equations for a viscoelastic micropolar fluid. Doklady Phys. 41(12), 598–601 (1996)MATHMathSciNetGoogle Scholar
  333. 333.
    Zubov L.M., Karyakin M.I.: Dislocations and disclinations in nonlinear elastic bodies with moment stresses. J. Appl. Mech. Tech. Phys. 31(3), 493–500 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Johannes Altenbach
    • 1
  • Holm Altenbach
    • 2
  • Victor A. Eremeyev
    • 3
  1. 1.MagdeburgGermany
  2. 2.Lehrstuhl für Technische Mechanik, Zentrum für IngenieurwissenschaftenMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  3. 3.South Scientific Center of RASci and South Federal UniversityRostov on DonRussia

Personalised recommendations