A simple model for dynamic recrystallization during severe plastic deformation

Special Issue

Abstract

During severe plastic deformation at elevated temperature dynamic recrystallization governs the microstructural evolution in natural geological processes as well as in industrial processing of metals, e.g. during equal channel angular extrusion (ECAE). Microstructure changes into almost dislocation-free grains of an average diameter of a few hundred nanometers yielding materials with excellent room-temperature strength. In this paper, we present a thermodynamically consistent model for the dynamic recrystallization during severe plastic deformation which provides explicit evolution equations for grain size and dislocation density.

Keywords

Grain size Dislocation density Dynamic recrystallization 

References

  1. 1.
    Hall E.O.: The deformation and ageing of mild steel. Proc. Phys. Soc. B 64, 742–753 (1951)CrossRefGoogle Scholar
  2. 2.
    Petch N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)Google Scholar
  3. 3.
    Louchet, F., Weiss, J., Richeton, T.: Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett. 97(7) (2006)Google Scholar
  4. 4.
    Taylor G.I.: The mechanism of plastic deformation of crystals. Proc. Roy. Soc. Lond. A 145, 362–387 (1934)CrossRefGoogle Scholar
  5. 5.
    Castro-Fernandez F.R., Sellars C.M.: Relationship between room-temperature proof stress, dislocation density and subgrain size. Phil. Mag. A 60(4), 487–506 (1989)CrossRefGoogle Scholar
  6. 6.
    Segal V.M.: Material processing by simple shear. Mater. Sci. Eng. A 197, 157–164 (1995)CrossRefGoogle Scholar
  7. 7.
    Iwahashi Y., Wang J., Horita Z., Nemoto M., Langdon T.G.: Principle of equal channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143–146 (1996)CrossRefGoogle Scholar
  8. 8.
    Mishra A., Richard V., Grégori F., Asaro R.J., Meyers M.A.: Microstructural evolution in copper processed by severe plastic deformation. Mat. Sci. Eng. A 410(411), 290–298 (2005)CrossRefGoogle Scholar
  9. 9.
    Poirier J.P., Guillope M.: Deformation induced recrystallization of minerals. Bull. Mineral. 102, 67–74 (1979)Google Scholar
  10. 10.
    Poirier J.P., Nicolas A.: Deformation-induced recrystallization due to progressive misorientation of subgrains, with special reference to mantle peridotites. J. Geol. 83, 707–720 (1975)CrossRefGoogle Scholar
  11. 11.
    Taylor G.I., Quinney H.: The latent energy remaining in a metal after cold working. Proc. R. Soc. A 143, 307–326 (1934)CrossRefGoogle Scholar
  12. 12.
    Baker I., Liu L., Mandal D.: The effect of grain-size on the stored energy of cold work as a function of strain for polycrystalline nickel. Scr. Met. Mater. 32, 167–171 (1995)CrossRefGoogle Scholar
  13. 13.
    Berdichevsky V.L.: On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)CrossRefGoogle Scholar
  14. 14.
    Kaibyshev A., Shipilova K., Musin F., Motohashi Y.: Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion. Mat. Sci. Eng. A 396, 341–351 (2005)CrossRefGoogle Scholar
  15. 15.
    Lin J., Dean T.A.: Modelling of microstructure evolution in hot forming using unified constitutive equations. Mat. Proc. Techn. 167(2-3), 354–362 (2005)CrossRefGoogle Scholar
  16. 16.
    Busso E.P.: A continuum theory for dynamic recrystallization with microstructure-related length scales. Int. J. Plast. 14(4-5), 319–353 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Hirth J.P., Lothe J.: Theory of Dislocations, 2nd edn. Krieger, Malabar (1982)Google Scholar
  18. 18.
    Hill R.E.: Physical Metallurgy Principles, 15th edn. D. Van Nostrand Company, New York (1973)Google Scholar
  19. 19.
    Kassner M.E., Barrabes S.R.: New developments in geometric dynamic recrystallization. Mat. Sci. Eng. A 140(411), 152–155 (2005)CrossRefGoogle Scholar
  20. 20.
    Faria S.H.: Creep and recrystallization of large polycrystalline masses Part I: general continuum theory. Proc. R. Soc. A 462, 1493–1514 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Faria S.H., Kremer G.M., Hutter K.: Creep and recrystallization of large polycrystalline masses. II. Constitutive theory for crystalline media with transversely isotropic grains. Proc. R. Soc. A 462, 1699–1720 (2006)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Lehrstuhl für Allgemeine MechanikRuhr-Universität BochumBochumGermany

Personalised recommendations