Archive of Applied Mechanics

, Volume 79, Issue 5, pp 469–478 | Cite as

Asymptotic suction profiles for the Blasius and Sakiadis flow with constant and variable fluid properties

Technical Note

Abstract

A theoretical study of the effect of variable fluid properties on the Blasius and Sakiadis flow with uniform suction at the asymptotic state is presented in this paper. The investigation concerns air and water taking into account the variation of their physical properties with temperature. Velocity and temperature profiles are presented as well as values of the displacement thickness, momentum thickness, shape factor, wall shear stress and Nusselt number for different temperatures of the plate and the ambient fluid. It is found that the nondimensional displacement thickness, momentum thickness, shape factor, absolute wall shear stress and Nusselt number are identical in both Blasius and Sakiadib flow at the asymptotic state for a fluid with constant properties. The same is valid for any fluid with variable properties if the temperature boundary conditions are the same in Blasius and Sakiadis flow.

Keywords

Blasius flow Sakiadis flow Suction Variable properties Air Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya S., Murthy J.: Foreword to the special issue on computational heat transfer. ASME J. Heat Transf. 129, 405–406 (2007)CrossRefGoogle Scholar
  2. 2.
    Anderson D., Tannehill J., Pletcher R.: Computational Fluid Mechanics and Heat Transfer. McGraw-Hiil Company, Mew York (1984)MATHGoogle Scholar
  3. 3.
    Aydin O., Kaya A.: Laminar boundary layer flow over a horizontal permeable flat plate. Appl. Math. Comput. 161, 229–240 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bejan A.: Convection Heat Transfer. Wiley, New York (1995)Google Scholar
  5. 5.
    Blasius H.: Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908)Google Scholar
  6. 6.
    Braslow, A.L.: A history of suction-type laminar-flow control with emphasis on flight research, NASA History Division, Monographs in Aerospace History, Number 13, Washington, DC 20546 (1999)Google Scholar
  7. 7.
    Fox V.G., Erickson L.E., Fan L.T.: Methods for solving the boundary layer equations for moving continuous flat surfaces with suction and injection. AIChe J. 14, 726–736 (1969)CrossRefGoogle Scholar
  8. 8.
    Iglisch, R.: Exakte Berechnung der laminaren Reibungsschicht an der längsangeströmten ebenen Platte mit homogener Absaugung. Schriften d. dt. Akad. Luftfahrtforschung, 8B, Nr. 1, translation: NACA-RM-1205 (1949) (1944)Google Scholar
  9. 9.
    Kakac S., Yener Y.: Convective Heat Transfer, 2nd edn. CRC Press, Boca Raton (1995)Google Scholar
  10. 10.
    Oosthuizen P., Naylor D.: Introduction to Convective Heat Transfer Analysis. McGraw-Hill, New York (1999)Google Scholar
  11. 11.
    Pantokratoras A.: Laminar free-convection over a vertical isothermal plate with uniform blowing or suction in water with variable physical properties. Int. J. Heat Mass Transf. 45, 963–977 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Pantokratoras A.: The Blasius, Sakiadis and Blasius–Sakiadis flow with uniform suction. A unified approach. Prog. Comput. Fluid Dyn. 7, 482–486 (2007)CrossRefGoogle Scholar
  13. 13.
    Patankar S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill Book Company, New York (1980)MATHGoogle Scholar
  14. 14.
    Sakiadis B.C.: Boundary layer behavior on continuous solid surfaces: The boundary layer on a continuous flat surface. AIChE J. 7, 221–225 (1961)CrossRefGoogle Scholar
  15. 15.
    Schlichting H., Gersten K.: Boundary layer theory, 9th edn. Springer, Berlin (2003)Google Scholar
  16. 16.
    Ulrich, A.: Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung, Aerodynamisches Institut der Technischen Hochschule Braunschweig, Bericht Nr. 44/8, translation: NACA Technical Memorandum 1121 (1947) (1944)Google Scholar
  17. 17.
    Watanabe T.: Thermal boundary layers over a wedge with uniform suction or injection in forced flow. Acta Mech. 83, 119–126 (1990)CrossRefGoogle Scholar
  18. 18.
    White F.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, New York (1991)Google Scholar
  19. 19.
    White F.: Viscous Fluid Flow,3rd edn. McGraw-Hill, New York (2006)Google Scholar
  20. 20.
    Zografos A.I., Martin W.A., Sunderland J.E.: Equations of properties as a function of temperature for seven fluids. Comp. Methods Appl. Mech. Eng. 61, 177–187 (1987)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Associate Professor of Fluid Mechanics, School of EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations