Archive of Applied Mechanics

, Volume 78, Issue 10, pp 775–794 | Cite as

Direct approach-based analysis of plates composed of functionally graded materials

  • Holm AltenbachEmail author
  • Victor A. Eremeyev


The classical plate theory can be applied to thin plates made of classical materials like steel. The first theory allowing the analysis of such plates was elaborated by Kirchhoff. But this approach was connected with various limitations (e.g., constant material properties in the thickness direction). In addition, some mathematical inconsistencies like the order of the governing equation and the number of boundary conditions exist. During the last century many suggestions for improvements of the classical plate theory were made. The engineering direction of improvements was ruled by applications (e.g., the use of laminates or sandwiches as the plate material), and so new hypotheses for the derivation of the governing equations were introduced. In addition, some mathematical approaches like power series expansions or asymptotic integration techniques were applied. A conceptional different direction is connected with the direct approach in the plate theory. This paper presents the extension of Zhilin’s direct approach to plates made of functionally graded materials.


Functionally graded materials Plate theories Direct approach Effective stiffness Transverse shear stiffness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.: (eds.) (1972). Handbook of Mathematical Functions. Dover, New YorkzbMATHGoogle Scholar
  2. 2.
    Altenbach H. (1988). Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ingenieur Archiv 58: 215–228 zbMATHCrossRefGoogle Scholar
  3. 3.
    Altenbach H. (2000). An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 37(25): 3503–3520 zbMATHCrossRefGoogle Scholar
  4. 4.
    Altenbach H. (2000). On the determination of transverse shear stiffnesses of orthotropic plates. ZAMP 51: 629–649 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Altenbach H. and Zhilin P. (1988). A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11(4): 107–148 MathSciNetGoogle Scholar
  6. 6.
    Altenbach, H., Zhilin, P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Critical Review of the Theories of Plates and Shells and New Applications. Lect. Notes Appl. Comp. Mech, vol. 16, pp. 1–12. Springer, Berlin (2004)Google Scholar
  7. 7.
    Altenbach H., Altenbach J. and Naumenko K. (1998). Ebene Flächentragwerke. Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer, Berlin zbMATHGoogle Scholar
  8. 8.
    Altenbach H., Altenbach J. and Kissing W. (2004). Mechanics of Composite Structural Elements. Springer, Berlin Google Scholar
  9. 9.
    Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W. and Wadley H.N.G. (2000). Metal Foams: A Design Guid. Butterworth-Heinemann, Boston Google Scholar
  10. 10.
    Banhart J. (2000). Manufacturing routes for metallic foams. J. Miner. 52(12): 22–27 Google Scholar
  11. 11.
    Chróścielewski J., Makowski J. and Pietraszkiewicz W. (2004). Statics and dynamics of multifold shells. Non-linear theory and finite element method (in Polish). Wydawnictwo IPPT PAN, Warszawa Google Scholar
  12. 12.
    Gibson L.J. and Ashby M.F. (1997). Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge Google Scholar
  13. 13.
    Grigolyuk, E.I., Seleznev, I.T.: Nonclassical theories of vibration of beams, plates and shelles (in Russian). In: Itogi nauki i tekhniki, Mekhanika tverdogo deformiruemogo tela, vol. 5, VINITI, Moskva (1973)Google Scholar
  14. 14.
    Gupta N. and Ricci W. (2006). Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Mater. Sci. Eng. A 427: 331–342 CrossRefGoogle Scholar
  15. 15.
    El Hadek M.A. and Tippur H.V. (2003). Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. Int. J. Solids struc. 40: 1885–1906 CrossRefGoogle Scholar
  16. 16.
    Kienzler R. (2002). On the consistent plate theories. Arch. Appl. Mech. 72: 229–247 zbMATHGoogle Scholar
  17. 17.
    Kienzler, R., Altenbach, H., Ott, I.: (eds.) Critical review of the theories of plates and shells, new applications. Lect. Notes Appl. Comp. Mech. vol. 16, Springer, Berlin (2004)Google Scholar
  18. 18.
    Kirchhoff G.R. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik 40: 51–88 zbMATHCrossRefGoogle Scholar
  19. 19.
    Libai A. and Simmonds J.G. (1998). The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  20. 20.
    Lurie A.I. (2005). Theory of Elasticity. Foundations of Engineering Mechanics. Springer, Berlin Google Scholar
  21. 21.
    Mindlin R.D. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Trans. ASME J. Appl. Mech. 18: 31–38 zbMATHGoogle Scholar
  22. 22.
    Naghdi, P.: The theory of plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)Google Scholar
  23. 23.
    Nye J.F. (2000). Physical Properties of Crystals. Oxford Science Publications, Clarendon, Oxford Google Scholar
  24. 24.
    Reissner E. (1944). On the theory of bending of elastic plates. J. Math. Phys. 23: 184–194 zbMATHMathSciNetGoogle Scholar
  25. 25.
    Reissner E. (1945). The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(11): A69–A77 MathSciNetGoogle Scholar
  26. 26.
    Reissner E. (1947). On bending of elastic plates. Q. Appl. Math. 5: 55–68 zbMATHMathSciNetGoogle Scholar
  27. 27.
    Reissner E. (1985). Reflection on the theory of elastic plates. Appl. Mech. Rev. 38(11): 1453–1464 CrossRefGoogle Scholar
  28. 28.
    Rothert, H.: Direkte Theorie von Linien- und Flächentragwerken bei viskoelastischen Werkstoffverhalten. Techn.-Wiss. Mitteilungen des Instituts für Konstruktiven Ingenieurbaus 73-2, Ruhr-Universität, Bochum (1973)Google Scholar
  29. 29.
    Stoer J. and Bulirsch R. (1980). Introduction to Numerical Analysis. Springer, New York Google Scholar
  30. 30.
    Timoshenko S.P. and Woinowsky-Krieger S. (1985). Theory of Plates and Shells. McGraw Hill, New York Google Scholar
  31. 31.
    Truesdell C. (1964). Die Entwicklung des Drallsatzes. ZAMM 44(4/5): 149–158 zbMATHMathSciNetGoogle Scholar
  32. 32.
    Zhilin P.A. (1976). Mechanics of deformable directed surfaces. Int. J. Solids Struc. 12: 635–648 CrossRefMathSciNetGoogle Scholar
  33. 33.
    Zhilin, P.A.: Applied mechanics. Foundations of the theory of shells (in Russian). St Petersburg State Polytechnical University (2007)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Lehrstuhl für Technische Mechanik, Zentrum für IngenieurwissenschaftenMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.South Scientific Center of RASci and South Federal UniversityRostov on DonRussia

Personalised recommendations