Archive of Applied Mechanics

, Volume 78, Issue 5, pp 393–407 | Cite as

Persoz’s gephyroidal model described by a maximal monotone differential inclusion

Original

Abstract

Persoz’s gephyroidal model, which consists of elementary rheological models (dry friction element and linear spring), can be covered by the existence and uniqueness theory for maximal monotone operators. Moreover, classical results of numerical analysis allow one to use a numerical implicit Euler scheme, with convergence order of the scheme equal to one. Some numerical simulations are presented.

Keywords

Gephyroidal model Persoz’s model Elastoplasticity Maximal monotone operator Differential inclusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastien, J.: Étude théorique et numérique d’inclusions différentielles maximales monotones. Applications à des modèles élastoplastiques. Ph.D. thesis, Université Lyon I, numéro d’ordre: 96 (2000)Google Scholar
  2. 2.
    Bastien J. and Schatzman M. (2000). Schéma numérique pour des inclusions différentielles avec terme maximal monotone. CR Acad. Sci. Paris Sér. I Math. 330(7): 611–615 MATHMathSciNetGoogle Scholar
  3. 3.
    Bastien J. and Schatzman M. (2002). Numerical precision for differential inclusions with uniqueness. M2AN Math. Model. Numer. Anal. 36(3): 427–460 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bastien J., Schatzman M. and Lamarque C.H. (2000). Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19(2): 277–307 MATHMathSciNetGoogle Scholar
  5. 5.
    Bastien J., Schatzman M. and Lamarque C.H. (2002). Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A Solids 21(2): 199–222 MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bastien J., Michon G., Manin L. and Dufour R. (2007). An analysis of the modified Dahl and Masing models: Application to a belt tensioner. J. Sound Vib. 302(4–5): 841–864 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973)Google Scholar
  8. 8.
    Coleman T.F. and Li Y. (1996). A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. 6(4): 1040–1058 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gill P.E., Murray W. and Wright M.H. (1981). Practical optimization. Academic/Harcourt Brace Jovanovich, London MATHGoogle Scholar
  10. 10.
    Persoz, B. (ed.): La Rhéologie: recueil de travaux des sessions de perfectionnement, Institut national des sciences appliquTes, Lyon. Monographies du Centre d’actualisation scientifique et technique, 3, Masson, Paris (1969)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire Mécatronique 3M, Équipe d’accueil A 3318Université de Technologie de Belfort-MontbéliardBelfort CedexFrance
  2. 2.URA 1652 CNRS, Département Génie Civil et Bâtiment, Laboratoire GéomatériauxÉcole Nationale des Travaux Publics de l’EtatVaulx-en-Velin CedexFrance

Personalised recommendations