Archive of Applied Mechanics

, Volume 78, Issue 5, pp 393–407

Persoz’s gephyroidal model described by a maximal monotone differential inclusion



Persoz’s gephyroidal model, which consists of elementary rheological models (dry friction element and linear spring), can be covered by the existence and uniqueness theory for maximal monotone operators. Moreover, classical results of numerical analysis allow one to use a numerical implicit Euler scheme, with convergence order of the scheme equal to one. Some numerical simulations are presented.


Gephyroidal model Persoz’s model Elastoplasticity Maximal monotone operator Differential inclusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire Mécatronique 3M, Équipe d’accueil A 3318Université de Technologie de Belfort-MontbéliardBelfort CedexFrance
  2. 2.URA 1652 CNRS, Département Génie Civil et Bâtiment, Laboratoire GéomatériauxÉcole Nationale des Travaux Publics de l’EtatVaulx-en-Velin CedexFrance

Personalised recommendations