Archive of Applied Mechanics

, Volume 77, Issue 2–3, pp 113–122 | Cite as

Finite element analysis of Volterra dislocations in anisotropic crystals: A thermal analogue

  • A. E. Giannakopoulos
  • K. P. Baxevanakis
  • A. Gouldstone
Original

Abstract

The present work gives a systematic and rigorous implementation of Volterra dislocations in ordinary two-dimensional finite elements using the thermal analogue and the integral representation of dislocations through the stresses. The full fields are given for edge dislocations in anisotropic crystals, and the Peach–Koehler forces are found for some important examples.

Keywords

Dislocations Finite elements Anisotropic elasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ABAQUS Version 6.4 Finite Element Code: Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, R. I.Google Scholar
  2. 2.
    Barnett, D.M.: In: Heyers, M.A., Armstrong, R.W., Kirchner, H. Elastic Anisotropy, Mechanics and Materials: Fundamentals and Linkages. John Wiley, New York pp 71–98 (1999)Google Scholar
  3. 3.
    Biot M.A. (1935) Distributed gravity and temperature loading in two dimensional elasticity replaced by boundary pressures and dislocations. J. Appl. Mech. IV(2): A41–45Google Scholar
  4. 4.
    Cotrell A.H. (1961) Dislocations and Plastic Flow in Crystals. Oxford University Press, LondonGoogle Scholar
  5. 5.
    Dundurs J., Markenscoff X. (1993) Invariance of stresses under a change in elastic compliances. Proc. R. Soc. Lond. A, A443, 289–300CrossRefMATHGoogle Scholar
  6. 6.
    Eshelby J.D., Read W.T., Shockley W. (1953) Anisotropic elasticity with applications to dislocation theory. Acta Metall. 1, 251–259CrossRefGoogle Scholar
  7. 7.
    Gouldstone, A., Giannakopoulos, A.E.: A finite element method for plain-strain and axisymmetric problems of microstructures with dislocations, under preparation (2005)Google Scholar
  8. 8.
    Hall E.O. (1951) The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Lond. Sect. B, 64, 747–53CrossRefGoogle Scholar
  9. 9.
    Hirth J.P., Lothe J. (1982) Theory of Dislocations, 2nd edn. Wiley, New YorkGoogle Scholar
  10. 10.
    Michell J.H. (1899) On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. Lond. Math. Soc. 31, 100–124Google Scholar
  11. 11.
    Mindlin, R.D., Salvadori, M.G.: Handbook of experimental stress analysis. Hetenyi, M. (ed) Wiley, New York, pp. 700–827 (1950)Google Scholar
  12. 12.
    Nabarro F.R.N. (1947) Dislocations in a single cubic lattice. Proc. Phys. Soc. 59, 256–272CrossRefGoogle Scholar
  13. 13.
    Nabarro F.R.N. (1997) Theoretical and experimental estimates of the Peierls stress. Phil. Mag. A75, 703–711Google Scholar
  14. 14.
    Peach M., Koehler J.S. (1950) The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Peierls R. (1940) The size of a dislocation. Proc. Phys. Soc. 52, 34–37CrossRefGoogle Scholar
  16. 16.
    Petch N.J. (1953) The cleavage of polycrystals. J. Iron Steel. Inst. 174, 25–28Google Scholar
  17. 17.
    Phillips R. (2001) Crystals, Defects and Microstructures: Models Across Scales. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Rice J.R. (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239–271CrossRefGoogle Scholar
  19. 19.
    Tadmor E.B., Ortiz M., Phillips R. (1996) Quasicontinuum analysis of defects in solids. Phil. Mag. A73, 1529–1563Google Scholar
  20. 20.
    Wang J.N. (1996) Prediction of Peierls stresses for different crystals. Mater. Sci. Eng. A206, 259–269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. E. Giannakopoulos
    • 1
  • K. P. Baxevanakis
    • 1
  • A. Gouldstone
    • 2
  1. 1.Laboratory of Strength of Materials and MicromechanicsUniversity of ThessalyVolosGreece
  2. 2.Stony Brook UniversityStony BrookUSA

Personalised recommendations