Advertisement

Archive of Applied Mechanics

, Volume 76, Issue 3–4, pp 119–131 | Cite as

A Variational Principle for the Revised Goodman–Cowin Theory with Internal Length

  • Chung FangEmail author
  • Yongqi Wang
  • Kolumban Hutter
Original

Abstract

In the present study a variational principle is proposed for the revised Goodman–Cowin theory with internal length for cohesionless granular materials (Fang et al. in Continuum Mech Thermodyn in press). The balance equations of the internal variables employed in the theory in equilibrium states, the equilibrium expressions of the constitutive variables and the corresponding natural boundary conditions are derived by use of the proposed variational principle for both cases of compressible and incompressible grains. It is demonstrated that the derived results coincide with those obtained by use of the thermodynamic analysis. The current work serves as a supplementary variational verification of the constitutive theory proposed in Fang et al. (in Continuum Mech Thermodyn in press).

Keywords

Goodman–Cowin theory Internal length Granular materials Variational principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athel S., El Naschie M.S. (1980). A variational approach to the stability analysis of non-gradient discrete systems. In: Nemat-Nasser S. (eds). Variational methods in the mechanics of solids. Pergamon Press, New York, pp 205–207Google Scholar
  2. 2.
    van Brunt B. (2004). The calculus of variations. Springer Heidelberg, New YorkzbMATHGoogle Scholar
  3. 3.
    Chien W.Z. (1983). Method of high-order Lagrange multiplier and generalized variational principles of elasticity with more general forms of functionals. Appl Math Mech 4(2):137–150MathSciNetGoogle Scholar
  4. 4.
    Cowin S.C. (1968). Polar fluids. Phys Fluids 9:1919–1927CrossRefGoogle Scholar
  5. 5.
    Cowin S.C. (1974). Constitutive relations that imply a generalized Mohr-Coulomb criterion. Acta Mech 20:41–46CrossRefzbMATHGoogle Scholar
  6. 6.
    Cowin S.C., Goodman M.A. (1976). A variational principle for granular materials. ZAMM 56:281–286MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part I. A class of constitutive models. Continuum Mech Thermodyn (in press) (2006)Google Scholar
  8. 8.
    Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part II. Non-equilibrium postulates and numerical simulations of simple shear, plane Poiseuille and gravity driven problems. Continuum Mech Thermodyn (in press) (2006)Google Scholar
  9. 9.
    Goodman M.A., Cowin S.C. (1971). Two problems in the gravity flow of granular materials. J Fluid Mech 45:321–339CrossRefzbMATHGoogle Scholar
  10. 10.
    Goodman M.A., Cowin S.C. (1972). A continuum theory for granular materials. Arch Ration Mech Anal 44:249–266CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    He J.H. (2001). Coupled variational principles of piezoelasticity. Int J Eng Sci 39:323–341CrossRefGoogle Scholar
  12. 12.
    He J.H. (2005). A generalized variational principle in micromorphic thermoelasticity. Mech Res Commun 32:93–98CrossRefzbMATHGoogle Scholar
  13. 13.
    Hildebrand F.B. (1965). Methods of applied mathematics. Prentice-Hall, Englewood Cliffs, NJzbMATHGoogle Scholar
  14. 14.
    Jenkins J.T. (1975). Static equilibrium of granular materials. J Appl Mech 42:603–606Google Scholar
  15. 15.
    Kirchner N. (2002). Thermodynamically consistent modelling of abrasive granular materials. I. Non-equilibrium theory. Proc R Soc Lond A 458:2153–2176MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kirchner N., Teufel A. (2002). Thermodynamically consistent modelling of abrasive granular materials. II. Thermodynamic equilibrium and applications to steady shear flows. Proc R Soc Lond A 458:3053–3077zbMATHGoogle Scholar
  17. 17.
    Leitmann G. (1981). The calculus of variations and optimal control: an introduction. Plenum Press, New YorkzbMATHGoogle Scholar
  18. 18.
    Liu H.M. (2005). Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method. Chaos Solitons Fractals 23:573–576CrossRefzbMATHGoogle Scholar
  19. 19.
    Milyutin, A.A., Osmolovskii, N.P.: Calculus of variations and optimal control. Translations of mathematical monographs 180, Americal Mathematical Society 1998Google Scholar
  20. 20.
    Mosconi M. (2002). Mixed variational formulations for continua with microstructure. Int J Solids Struct 39:4181–4195CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Nunziato J.W., Passman S.L. (1980). Gravitational flows of granular materials with incompressible grains. J Rheol 24:395–420CrossRefzbMATHGoogle Scholar
  22. 22.
    Nunziato J.W., Walsh E.K. (1980). On ideal multiphase mixtures with chemical reactions and diffusions. Arch Rational Mech Anal 73:285–311CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Passman S.L., Nunziato J.W., Bailey P.B., Thomas J.P. (1980). Shearing flow of granular materials. J Eng Mech Div ASCE 106:773–783Google Scholar
  24. 24.
    Passman S.L., Nunziato J.W., Walsh E.K. (1984). A theory of multiphase mixtures. In: Truesdell C. (eds). Rational thermodynamics. Springer, Berlin Heidelberg New York, pp 287–325Google Scholar
  25. 25.
    Santilli R.M. (1978). Foundations of theoretical mechanics I. The inverse problem in Newtonian mechanics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. 26.
    Santilli R.M. (1983). Foundations of theoretical mechanics II Birkhoffian generalization of Hamiltonian mechanics. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  27. 27.
    Sieniutycz S., Farkas H. (2005). Variational and extremum principles in macroscopic systems. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Valanis K.C. (1996). A gradient theory for internal variables. Acta Mech 116:1–14CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Wang Y., Hutter K. (1999). A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid–fluid mixtures. Granul Matter 1:163–181CrossRefGoogle Scholar
  30. 30.
    Wang Y., Hutter K. (1999). A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol Acta 38:214–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Mechanics IIIDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations