Advertisement

Characterization of NCC-RbC-51, an RB cell line isolated from a metastatic site

  • Hemanth Ravishankar
  • Abubakar Siddiq Mangani
  • M. Bhavani Shankar
  • Mayur Joshi
  • T. Devasena
  • Sowmya Parameswaran
  • Krishnakumar SubramaniamEmail author
Original Paper
  • 35 Downloads

Abstract

Retinoblastoma (RB) is a childhood eye tumor, caused by the RB1 gene mutation. Since RB is a rapidly proliferating tumor, the patient presents with a Group-D/E tumor at the time of diagnosis. Enucleation is preferred in most unilateral cases to prevent metastasis. Various cell lines have been established to study the tumor’s growth pattern and target the cancer cells. The commonly used cell lines are WERI-Rb-1 and Y79, both isolated from the primary tumor of RB. Cell lines established from the metastatic site of RB have not been characterized before. In this study, we have characterized NCC-RbC-51, derived from RB tumor to cervical lymph node site and investigated its potential to represent a highly aggressive and metastatic tumor. We compared the proliferative and invasive properties of NCC-RbC-51 with a cell line isolated from the primary site, WERI-Rb-1. NCC-RbC-51 had higher rates of proliferation and apoptosis and had better invasive ability. Copy number variation analysis and the pathways predicted from these show that the pathways altered in NCC-RbC-51 could contribute to its metastatic nature. In all, the results suggest that NCC-RbC-51, a cell line isolated from metastatic site, could be a potential model to study aggressive/invasive RB.

Keywords

Retinoblastoma Cell line NCC-RbC-51 Invasion Copy number variation 

Notes

Acknowledgements

We would like to acknowledge the Department of Biotechnology, India for funding the work (EXOSOMAL microRNA AS BIOMARKERS OF EARLY AND LATE STAGE RETINOBLASTOMA BT/PR8606/AGR/36/781/2013). We would like to acknowledge Dr. Masako Inomata, the originator of the NCC-RbC-51 cell line.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interests.

Supplementary material

418_2019_1832_MOESM1_ESM.xlsx (296 kb)
Supplementary material 1 (XLSX 296 kb)
418_2019_1832_MOESM2_ESM.xlsx (213 kb)
Supplementary material 2 (XLSX 212 kb)
418_2019_1832_MOESM3_ESM.tif (258 kb)
The untreated and Annexin PI stained RB cell lines, WERI-Rb-1 (B) and NCC-RbC-51 (A) showing the apoptotic profile of the two cell lines. (Q1 - Dead cell population, Annexin V–PI + , Q2 - Late apoptotic population, Annexin V + PI + , Q3 - Non-apoptotic population, Annexin V– PI–, Q4 - Early apoptotic population Annexin V + PI–) (TIFF 257 kb)
418_2019_1832_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 13 kb)

References

  1. Abramson DH, Schefler AC, Beaverson KL, Rollins IS, Ruddat MS, Kelly CJ (2002) Rapid growth of retinoblastoma in a premature twin. Arch Ophthalmol 120(9):1232–1233CrossRefGoogle Scholar
  2. Beresford MJ, Wilson GD, Makris A (2006) Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Res 8(6):216.  https://doi.org/10.1186/bcr1618 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Busch M, Philippeit C, Weise A, Dunker N (2015) Re-characterization of established human retinoblastoma cell lines. Histochem Cell Biol 143(3):325–338.  https://doi.org/10.1007/s00418-014-1285-z CrossRefPubMedGoogle Scholar
  4. Chevez-Barrios P, Hurwitz MY, Louie K, Marcus KT, Holcombe VN, Schafer P et al (2000) Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol 157(4):1405–1412.  https://doi.org/10.1016/S0002-9440(10)64653-6 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A et al (2006) Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 12(4):1168–1174.  https://doi.org/10.1158/1078-0432.CCR-05-1533 CrossRefPubMedGoogle Scholar
  6. Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D (2011) miR-17 ~ 92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 25(16):1734–1745.  https://doi.org/10.1101/gad.17027411 CrossRefPubMedPubMedCentralGoogle Scholar
  7. da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13.  https://doi.org/10.1093/nar/gkn923 CrossRefGoogle Scholar
  8. da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57.  https://doi.org/10.1038/nprot.2008.211 CrossRefGoogle Scholar
  9. Deng Z, Matsuda K, Tanikawa C, Lin J, Furukawa Y, Hamamoto R, Nakamura Y (2014) Late Cornified Envelope Group I, a novel target of p53, regulates PRMT5 activity. Neoplasia 16(8):656–664.  https://doi.org/10.1016/j.neo.2014.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Desai SS, Jambhekar NA (2010) Pathology of Ewing’s sarcoma/PNET: current opinion and emerging concepts. Indian J Orthop 44(4):363–368.  https://doi.org/10.4103/0019-5413.69304 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69(1):119–128CrossRefGoogle Scholar
  12. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655.  https://doi.org/10.1093/nar/gkx1132 CrossRefGoogle Scholar
  13. Gallie BL, Campbell C, Devlin H, Duckett A, Squire JA (1999) Developmental basis of retinal-specific induction of cancer by RB mutation. Cancer Res 59(7 Suppl):1731s–1735sPubMedGoogle Scholar
  14. Honavar SG, Singh AD (2005) Management of advanced retinoblastoma. Ophthalmol Clin N Am 18(1):65CrossRefGoogle Scholar
  15. Huang J, Zhang L, He C, Qu Y, Li J, Zhang J et al (2015) Claudin-1 enhances tumor proliferation and metastasis by regulating cell anoikis in gastric cancer. Oncotarget 6(3):1652–1665.  https://doi.org/10.18632/oncotarget.2936 CrossRefPubMedGoogle Scholar
  16. Inomata M, Kaneko A, Saijo N, Tokura S (1994) Culture of retinoblastoma cells from clinical specimens: growth-promoting effect of 2-mercaptoethanol. J Cancer Res Clin Oncol 120(3):149–155.  https://doi.org/10.1007/bf01202193 CrossRefPubMedGoogle Scholar
  17. Ito Y, Miyauchi A, Yoshida H, Uruno T, Nakano K, Takamura Y et al (2003) Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid: its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett 200(2):167–172CrossRefGoogle Scholar
  18. Jia D, Jing Y, Zhang Z, Liu L, Ding J, Zhao F et al (2014) Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res 24(2):204–217.  https://doi.org/10.1038/cr.2013.158 CrossRefPubMedGoogle Scholar
  19. Kang SJ, Grossniklaus HE (2011) Rabbit model of retinoblastoma. J Biomed Biotechnol 2011:394730.  https://doi.org/10.1155/2011/394730 CrossRefPubMedGoogle Scholar
  20. Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2(1):1–5.  https://doi.org/10.4161/spmg.19885 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kivela T, Tarkkanen A, Virtanen I (1989) Synaptophysin in the human retina and retinoblastoma. An immunohistochemical and Western blotting study. Invest Ophthalmol Vis Sci 30(2):212–219PubMedGoogle Scholar
  22. Magalhaes A, Duarte HO, Reis CA (2017) Aberrant glycosylation in cancer: a novel molecular mechanism controlling metastasis. Cancer Cell 31(6):733–735.  https://doi.org/10.1016/j.ccell.2017.05.012 CrossRefPubMedGoogle Scholar
  23. Manning AL, Longworth MS, Dyson NJ (2010) Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24(13):1364–1376.  https://doi.org/10.1101/gad.1917310 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Marshall J (2011) Transwell((R)) invasion assays. Methods Mol Biol 769:97–110.  https://doi.org/10.1007/978-1-61779-207-6_8 CrossRefPubMedGoogle Scholar
  25. Massberg D, Jovancevic N, Offermann A, Simon A, Baniahmad A, Perner S et al (2016) The activation of OR51E1 causes growth suppression of human prostate cancer cells. Oncotarget 7(30):48231–48249.  https://doi.org/10.18632/oncotarget.10197 CrossRefPubMedPubMedCentralGoogle Scholar
  26. McFall RC, Sery TW, Makadon M (1977) Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 37(4):1003–1010PubMedGoogle Scholar
  27. Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ESJO (2014) Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 5(9):2736CrossRefGoogle Scholar
  28. Su S, Gao J, Wang T, Wang J, Li H, Wang ZJTB (2015) Long non-coding RNA BANCR regulates growth and metastasis and is associated with poor prognosis in retinoblastoma. Tumor Biol 36(9):7205–7211.  https://doi.org/10.1007/s13277-015-3413-3 CrossRefGoogle Scholar
  29. Tester AM, Ruangpanit N, Anderson RL, Thompson EWJC (2000) MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 18(7):553–560CrossRefGoogle Scholar
  30. Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C et al (2014) Overexpression of alpha (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24(10):935–944.  https://doi.org/10.1093/glycob/cwu051 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yeh YT, Dai HY, Chien CY (2014) Amplification of MPZL1/PZR gene in hepatocellular carcinoma. Hepatob Surg Nutr 3(2):87–90.  https://doi.org/10.3978/j.issn.2304-3881.2014.02.06 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.L&T Department of Ocular PathologyVision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and OphthalmologyChennaiIndia
  2. 2.RadheshyamKanoi Stem Cell LaboratoryVision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and OphthalmologyChennaiIndia
  3. 3.L&T Department of Ocular PathologyMedical Research Foundation, Sankara NethralayaChennaiIndia
  4. 4.Centre for Nanoscience and TechnologyAnna UniversityChennaiIndia

Personalised recommendations