Glycolaldehyde induces sensory neuron death through activation of the c-Jun N-terminal kinase and p-38 MAP kinase pathways
- 101 Downloads
Abstract
Glycolaldehyde (GA) is a highly reactive hydroxyaldehyde and one of the glycolytic metabolites producing advanced glycation endproducts (AGEs), but its toxicity toward neurons and Schwann cells remains unclear. In the present study, we found that GA exhibited more potent toxicity than other AGE precursors (glyceraldehyde, glyoxal, methylglyoxal and 3-deoxyglucosone) against immortalized IFRS1 adult rat Schwann cells and ND7/23 neuroblastoma × neonatal rat dorsal root ganglion (DRG) neuron hybrid cells. GA affected adult rat DRG neurons and ND7/23 cells more severely than GA-derived AGEs, and exhibited concentration- and time-dependent toxicity toward ND7/23 cells (10 < 100 < 250 < 500 µM; 6 h < 24 h). Treatment with 500 µM GA significantly up-regulated the phosphorylation of c-jun N-terminal kinase (JNK) and p-38 mitogen-activated kinase (p-38 MAPK) in ND7/23 cells. Furthermore, GA-induced ND7/23 cell death was significantly inhibited due to co-treatment with 10 µM of the JNK inhibitor SP600125 or the p-38 MAPK inhibitor SB239063. These findings suggest the involvement of JNK and p-38 MAPK-signaling pathways in GA-induced neuronal cell death and that enhanced GA production under diabetic conditions might be involved in the pathogenesis of diabetic neuropathy.
Keywords
Diabetic neuropathy Sensory neurons Schwann cells Viability Glycolytic metabolites Mitogen-activated protein kinase signalingAbbreviations
- AGEs
Advanced glycation endproducts
- 3-DG
3-Deoxyglucosone
- DRG
Dorsal root ganglia
- ER
Endoplasmic reticulum
- GA
Glycolaldehyde
- GLA
Glyceraldehyde
- GO
Glyoxal
- IFRS1
Immortalized adult Fischer rat Schwann cell 1
- JNK
c-Jun N-terminal kinase
- MAPK
Mitogen-activated protein kinase
- MG
Methylglyoxal
- PNS
Peripheral nervous system
Notes
Acknowledgements
This study was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (JSPS KAKENHI 16K07048). We would like to thank Prof. Atsufumi Kawabata and Dr. Fumiko Sekiguchi (Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan) for providing us ND7/23 cells, and Prof. Shuji Mori (Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan) for helpful suggestions on AGEs’ preparation.
Author contributions
TA designed and conducted the experiments, and wrote the manuscript. ST, MS, NN, HY, KM, DK, KU, and RN conducted the experiments and discussed the results. KS designed the experiments, wrote the manuscript, and supervised the project.
Compliance with ethical standards
Conflict of interest
The authors declare no conflict of interest.
References
- Agthong S, Kaewsema A, Chentanez V (2012) Inhibition of p38 MAPK reduces loss of primary sensory neurons after nerve transection. Neurol Res 34:714–720PubMedCrossRefPubMedCentralGoogle Scholar
- Al-Maghrebi M, Al-Mulla F, Benov L (2003) Glycolaldehyde induces apoptosis in a human breast cancer cell line. Arch Biochem Biophys 417:123–127PubMedCrossRefPubMedCentralGoogle Scholar
- Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, Sauer KS, Eberhardt MM, Schnölzer M, Lasitschka F, Neuhuber LW, Kichko IT, Konrade I, Elvert R, Mier W, Pirags V, Lukic KI, Morcos M, Dehmer T, Rabbani N, Thornalley JP, Edelstein D, Nau C, Forbes J, Humpert MP, Schwaninger M, Ziegler D, Stern MD, Cooper EM, Haberkorn U, Brownlee M, Reeh WP, Nawroth PP (2012) Methylgloxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 18:926–933PubMedCrossRefPubMedCentralGoogle Scholar
- Bikbova G, Oshitari T, Yamamoto S (2013) Neurite regeneration in adult rat retinas exposed to advanced glycation end-products and regenerative effects of neurotrophin-4. Brain Res 1534:33–45PubMedCrossRefPubMedCentralGoogle Scholar
- Bodner A, Toth PT, Miller RJ (2004) Activation of c-Jun N-terminal kinase mediates gp120IIIB- and nucleoside analogue-induced sensory neuron toxicity. Exp Neurol 188:246–253PubMedCrossRefPubMedCentralGoogle Scholar
- Bose AK, Janes KA (2013) A high-throughput assay for phosphoprotein-specific phosphatase activity in cellular extracts. Mol Cell Proteomics 12:797–806PubMedCrossRefPubMedCentralGoogle Scholar
- Brings S, Fleming T, Freichel M, Muckenthaler M, Herzig S, Nawroth P (2017) Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int J Mol Sci 2017:18Google Scholar
- Cellek S, Qu W, Schmidt AM, Moncada S (2004) Synergistic action of advanced glycation end products and endogenous nitric oxide leads to neuronal apoptosis in vitro: a new insight into selective nitrergic neuropathy in diabetes. Diabetologia 47:331–339PubMedCrossRefPubMedCentralGoogle Scholar
- Choei H, Sasaki N, Takeuchi M, Yoshida T, Ukai W, Yamagishi S, Saito T (2004) Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathol 108:189–193PubMedCrossRefPubMedCentralGoogle Scholar
- Chu JM, Lee DK, Wong DP, Wong GT, Yue KK (2016) Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis 31:1055–1064PubMedCrossRefPubMedCentralGoogle Scholar
- Chun HJ, Lee Y, Kim AH, Lee J (2016) Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis. Neurotox Res 29:419–431PubMedCrossRefPubMedCentralGoogle Scholar
- Fukunaga M, Miyata S, Liu B, Miyazaki H, Hirota Y, Higo S, Hamada Y, Ueyama S, Kasuga M (2004) Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochem Biophys Res Commun 320:689–695PubMedCrossRefPubMedCentralGoogle Scholar
- Grisold A, Callaghan B, Feldman E (2017) Mediators of diabetic neuropathy—is hyperglycemia the only culprit? Curr Opin Endcrinol Diabetes Obes 24:103–111CrossRefGoogle Scholar
- Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912PubMedCrossRefPubMedCentralGoogle Scholar
- Kikuchi S, Shinpo K, Moriwaka F, Makita Z, Miyata T, Tashiro K (1998) Neurotoxicity of methylgloxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved neurodegenerative diseases. J Neurosci Res 57:280–289CrossRefGoogle Scholar
- Li W, Zhu J, Dou J, She H, Tao K, Xu H, Yang Q, Mao Z (2017) Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun 8:1763PubMedPubMedCentralCrossRefGoogle Scholar
- Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JC (2010a) Circulating glycoaldehyde induces oxidative damage in the kidney of rats. Diabetes Res Clin Pract 89:262–267PubMedCrossRefPubMedCentralGoogle Scholar
- Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JC (2010b) Glycolaldehyde induces oxidative stress in the heart: a clue to diabetic cardiomyopathy? Cardiovasc Toxicol 10:244–249PubMedCrossRefPubMedCentralGoogle Scholar
- Lorenzi R, Andrades ME, Bortolin RC, Nagai R, Dal-Pizzol F, Moreira JC (2011) Oxidative damage in the liver of rats treated with glycolaldehyde. Int J Toxicol 30:253–258PubMedCrossRefGoogle Scholar
- Luo ZJ, King RH, Lewin J, Thomas PK (2002) Effects of nonenzymatic glycosylation of extracellular matrix components on cell survival and sensory neurite extension in cell culture. J Neurol 249:424–431PubMedCrossRefGoogle Scholar
- Nam MH, Son WR, Lee YS, Lee KW (2015) Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium. Cell Commun Adhes 22:67–78PubMedCrossRefGoogle Scholar
- Navarrete Santos A, Jacobs K, Simm A, Glaubitz N, Horstkorte R, Hofmann B (2017) Dicarbonyls induce senescence of human vascular endothelial cells. Mech Ageing Dev 166:22–32CrossRefGoogle Scholar
- Neganova I, Shmeleva E, Munkley J, Chichagova V, Anyfantis G, Anderson R, Passos J, Elliott DJ, Armstrong L, Lako M (2016) JNK/SAPK signaling is essential for efficient reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cells 34:1198–1212PubMedPubMedCentralCrossRefGoogle Scholar
- Niimi N, Yako H, Takaku S, Kato H, Matsumoto T, Nishito Y, Watabe K, Ogasawara S, Mizukami H, Yagihashi S, Chung SK, Sango K (2018) A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism. J Neurochem 144:710–722PubMedCrossRefPubMedCentralGoogle Scholar
- Nishizawa Y, Wada R, Baba M, Takeuchi M, Hanyu-Itabashi C, Yagihashi S (2010) Neuropathy induced by exogenously administered advanced glycation end-products in rats. J Diabetes Investig 1:40–49PubMedPubMedCentralCrossRefGoogle Scholar
- North AJ, Gimona M, Lando Z, Small JV (1994) Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci 107:445–455PubMedPubMedCentralGoogle Scholar
- Ota K, Nakamura J, Li W, Kozakae M, Watarai A, Nakamura N, Yasuda Y, Nakashima E, Naruse K, Watabe K, Kato K, Oiso Y, Hamada Y (2007) Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells. Biochem Biophys Res Commun 357:270–275PubMedCrossRefPubMedCentralGoogle Scholar
- Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta 1863:1037–1045CrossRefGoogle Scholar
- Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K (2011) Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 89:898–908PubMedCrossRefPubMedCentralGoogle Scholar
- Sato K, Tatsunami R, Yama K, Tampo Y (2013) Glycolaldehyde induces cytotoxicity and increases glutathione and multidrug-resistance-associated protein levels in Schwann cells. Biol Pharm Bull 36:1111–1117PubMedCrossRefPubMedCentralGoogle Scholar
- Sato K, Tatsunami R, Yama K, Tampo Y (2015) Glycolaldehyde induces endoplasmic reticulum stress and apoptosis in Schwann cells. Toxicol Rep 2:1454–1462PubMedPubMedCentralCrossRefGoogle Scholar
- Schönhofen P, de Meiros LM, Bristot IJ, Lopes FM, De Bastiani MA, Kapczinski F, Crippa JA, Castro MA, Parsons RB, Klame F (2015) Cannabidiol exposure during neuronal differentiation sensitizes cells against redox-active neurotoxins. Mol Neurobiol 52:26–37PubMedCrossRefPubMedCentralGoogle Scholar
- Scuteri A, Galimberti A, Ravasi M, Pasini S, Donzelli E, Cavaletti G, Tredici G (2010) NGF protects dorsal root ganglion neurons from oxaliplatin by modulating JNK/Sapk and ERK1/2. Neurosci Lett 486:141–145PubMedCrossRefPubMedCentralGoogle Scholar
- Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S (2004) Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 320:241–248PubMedCrossRefPubMedCentralGoogle Scholar
- Shimizu F, Sano Y, Haruki H, Kanda T (2011) Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-β and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 54:1517–1526PubMedCrossRefPubMedCentralGoogle Scholar
- Suzuki K, Ho Koh Y, Mizuno H, Hamaoka R, Taniguchi N (1998) Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3-deoxyglucosone. J Biochem 123:353–357PubMedCrossRefPubMedCentralGoogle Scholar
- Takeuchi M, Bucala R, Suzuki T, Ohkubo T, Yamazaki M, Koike T, Kameda Y, Makita Z (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol 59:1094–1105PubMedCrossRefPubMedCentralGoogle Scholar
- Takeuchi M, Takino J, Furuno S, Shirai H, Kawakami M, Muramatsu M, Kobayashi Y, Yamagishi S (2015) Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. PLoS One 10:e0118652PubMedPubMedCentralCrossRefGoogle Scholar
- Tsukamoto M, Niimi N, Sango K, Takaku S, Kanazawa Y, Utsunomiya K (2015a) Neurotrophic and neuroprotective properties of exendin-4 in adult rat dorsal root ganglion neurons: involvement of insulin and RhoA. Histochem Cell Biol 144:249–259PubMedCrossRefPubMedCentralGoogle Scholar
- Tsukamoto M, Sango K, Yanagisawa H, Watabe K, Utsunomiya K (2015b) Upregulation of galectin-3 in immortalized Schwann cells IFRS1 under diabetic conditions. Neurosci Res 92:80–85PubMedCrossRefPubMedCentralGoogle Scholar
- Wood JN, Bevan SJ, Coote PR, Dunn PM, Harmar A, Hogan P, Latchman DS, Morrison C, Rougon G, Theveniau M, Wheatley S (1990) Novel cell lines display properties of nociceptive sensory neurons. Proc Biol Sci 241:187–194PubMedCrossRefPubMedCentralGoogle Scholar
- Yagihashi S (2016) Glucotoxic mechanisms and related therapeutic approaches. Int Rev Neurobiol 127:121–149PubMedCrossRefPubMedCentralGoogle Scholar
- Yamabe S, Hirose J, Uehara Y, Okada T, Okamoto N, Oka K, Taniwaki T, Mizuta H (2013) Intracellular accumulation of advanced glycation end products induces apoptosis via endoplasmic reticulum stress in chondrocytes. FEBS J 280:1617–1629PubMedCrossRefPubMedCentralGoogle Scholar
- Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 290:973–978PubMedCrossRefPubMedCentralGoogle Scholar
- Yang K, Feng C, Lip H, Bruce WR, O’Brien PJ (2011) Cytotoxic molecular mechanisms and cytoprotection by enzymic metabolism or autoxidation for glyceraldehyde, hydroxypyruvate and glycolaldehyde. Chem Biol Interact 191:315–321PubMedCrossRefPubMedCentralGoogle Scholar