Advertisement

Histone deacetylase inhibitors suppress transdifferentiation of gonadotrophs to prolactin cells and proliferation of prolactin cells induced by diethylstilbestrol in male mouse pituitary

  • Nandar Tun
  • Yasuaki Shibata
  • Myat Thu Soe
  • Myo Win Htun
  • Takehiko Koji
Original Paper
  • 25 Downloads

Abstract

Diethylstilbestrol (DES), an estrogen agonist, increases prolactin (PRL) cells through transdifferentiation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells to PRL cells as well as proliferation of PRL cells in adult male mouse pituitary. Since hyperacetylation of histone H3 is implicated in the regulation of activation of various genes, we examined the effect of DES on the state of histone H3 acetylation. DES significantly reduced the immunohistochemical signal for acetylated histone H3 at lysine 9 (H3K9ac) in PRL, LH and FSH cells, but not for H3K18ac or H3K23ac. DES-treated mice were injected intraperitoneally with HDAC inhibitors (HDACi), sodium phenylbutyrate (NaPB) or valproic acid (VPA), to mimic the acetylation level of histone H3. As expected, HDACi treatment restored the level of H3K9ac expression in these cells, and also inhibited DES-induced increase in PRL cells. Furthermore, NaPB and VPA also abrogated the effects of DES on the population density of both LH and FSH cells. Similarly, the numbers of proliferating and apoptotic cells in the pituitary in NaPB- or VPA-treated mice were comparable to those of the control mice. Considered together, these results indicated that the acetylation level of histone H3 plays an important role in DES-induced transdifferentiation of LH to PRL cells as well as proliferation of PRL cells.

Keywords

Diethylstilbestrol Prolactin Gonadotrophs Transdifferentiation Histone H3 lysine 9 acetylation Histone deacetylase inhibitor 

Notes

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research from Japanese Ministry of Education, Culture, Sports, Science and Technology (nos. 1247003, 15390058, 16659047, 16H05813 and 16K15173 to T. Koji) and by a grant from the Japanese Environment Agency (to T. Koji). We thank Dr. Daisuke Endo and Mrs. Shiho Kondo for their helpful advice and technical support.

References

  1. AL-Keilani MS, Alsmadi DH (2018) The HDAC inhibitor sodium phenylbutyrate enhances the cytotoxicity induced by 5-fluorouracil, oxaliplatin, and irinotecan in colorectal cancer cell lines. Int J Pharm Pharm Sci 10(1):155–159.  https://doi.org/10.22159/ijpps.2018v10i1.22947 CrossRefGoogle Scholar
  2. Alwis ID, Maroni DM, Hendry IR, Roy SK, May JV, Leavitt WW, Hendry WJ (2011) Neonatal diethylstilbestrol exposure disrupts female reproductive tract structure/function via both direct and indirect mechanisms in the hamster. Reprod Toxicol 32(4):472–483.  https://doi.org/10.1016/j.reprotox.2011.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. An S, Hishikawa Y, Koji T (2005) Induction of cell death in rat small intestine by ischemia reperfusion: differential roles of Fas/Fas ligand and Bcl-2/Bax systems depending upon cell types. Histochem Cell Biol 123(3):249–261.  https://doi.org/10.1007/s00418-005-0765-6 CrossRefPubMedGoogle Scholar
  4. Azuma K, Urano T, Horie-Inoue K, Hayashi S, Sakai R, Ouchi Y, Inoue S (2009) Association of estrogen receptor α and histone deacetylase 6 causes rapid deacetylation of tubulin in breast cancer cells. Cancer Res 69(7):2935–2940.  https://doi.org/10.1158/0008-5472.CAN-08-3458 CrossRefPubMedGoogle Scholar
  5. Barneda-Zahonero B, Roman-Gonzalez L, Collazo O, Mahmoudi T, Parra M (2012) Epigenetic regulation of B lymphocyte differentiation, transdifferentiation, and reprogramming. Comp Funct Genom.  https://doi.org/10.1155/2012/564381 CrossRefGoogle Scholar
  6. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784.  https://doi.org/10.1038/nrd2133 CrossRefPubMedGoogle Scholar
  7. Cauwenberge AV, Nonclercq D, Laurent G, Zanen J, Beckers JF, Alexandre H, Heuson-Stiennon JA, Toubeau G (2001) Immunohistochemistry of the golden hamster pituitary during chronic administration of diethylstilbestrol: a quantitative analysis using confocal laser scanning microscopy. Histochem Cell Biol 115(2):169–178.  https://doi.org/10.1007/s004180000212 CrossRefPubMedGoogle Scholar
  8. Chen R, Duan J, Li L, Ma Q, Sun Q, Ma J, Li C, Zhou X, Chen H, Jing Y, Zhao S, Wu X, Zhang H (2016) mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene 36(7):979–988.  https://doi.org/10.1038/onc.2016.264 CrossRefPubMedGoogle Scholar
  9. Dai L, Endo D, Akiyama N, Yammoto-Fukuda T, Koji T (2015) Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis. Histochem Cell Biol 143(2):209–224.  https://doi.org/10.1007/s00418-014-1283-1 CrossRefPubMedGoogle Scholar
  10. Damaskos C, Karatzas T, Nikolidakis L, Kostakis ID, Karamaroudis S, Boutsikos G, Damaskou Z, Kostakis A, Kouraklis G (2015) Histone deacetylase (HDAC) inhibitors: current evidence for therapeutic activities in pancreatic cancer. Anticancer Res 35:3129–3136PubMedGoogle Scholar
  11. Dong X, Pan R, Zhang H, Yang C, Shao J, Xiang L (2013) Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PLoS One 8(5):1–8.  https://doi.org/10.1371/journal.pone.0063405.g001 CrossRefGoogle Scholar
  12. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, Cruz-Hernandez E, Herrera LA (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34(3):206–222.  https://doi.org/10.1016/j.ctrv.2007.11.003 CrossRefPubMedGoogle Scholar
  13. Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R, Herger B, Yang Y, Atadja P, Wu J, Bhalla K (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-α levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13(16):4882–4890.  https://doi.org/10.1158/1078-0432.CCR-06-3093 CrossRefPubMedGoogle Scholar
  14. Fortress AM, Kim J, Poole RL, Gould TJ, Frick KM (2014) 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice. Learn Mem 21(9):457–467.  https://doi.org/10.1101/lm.034033.113 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujiwara K, Yatabe M, Tofrizal A, Jindatip D, Yashiro T, Nagai R (2017) Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res 368(2):371–378.  https://doi.org/10.1007/s00441-016-2564-x CrossRefPubMedGoogle Scholar
  16. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978.  https://doi.org/10.1093/emboj/20.24.6969 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS (2004) Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 64(3):1079–1086CrossRefPubMedGoogle Scholar
  18. Hezroni H, Tzchori I, Davidi A, Mattout A, Biran A, Nissim-Rafnia M, Westphal H, Meshorer E (2011) H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells. Nucleus 2(4):300–309.  https://doi.org/10.4161/nucl.2.4.16767 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Horiguchi K, Fujiwara K, Yoshida S, Nakakura T, Araes K, Tsukada T, Hasegawai R, Takigami S, Ohsako S, Yashiro T, Kato T, Kato Y (2018) Isolation and characterisation of CD9-positive pituitary adult stem/progenitor cells in rats. Sci Rep 8(1):5533.  https://doi.org/10.1038/s41598-018-23923-0 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hrgovic I, Doll M, Kleemann J, Wang XF, Zoeller N, Pinter A, Kippenberger S, Kaufmann R, Meissner M (2016) The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer 16(1)763.  https://doi.org/10.1186/s12885-016-2807-y CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huo D, Anderson D, Palmer JR, Herbst AL (2017) Incidence rates and risks of diethylstilbestrol-related clear-cell adenocarcinoma of the vagina and cervix: update after 40-year follow-up. Gynecol Oncol 146(3):566–571.  https://doi.org/10.1016/j.ygyno.2017.06.028 CrossRefPubMedGoogle Scholar
  22. Iannitti T, Palmieri B (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R&D 11(3):227–249.  https://doi.org/10.2165/11591280-000000000-00000 CrossRefGoogle Scholar
  23. Kang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y (2003) Nickel-induced histone hypoacetylation: the role of reactive oxygen species. Toxicol Sci 74(2):279–286.  https://doi.org/10.1093/toxsci/kfg137 CrossRefPubMedGoogle Scholar
  24. Karasawa Y, Okisaka S (2004) Inhibition of histone deacetylation by butyrate induces morphological changes in Y79 retinoblastoma cells. Jpn J Ophthalmol 48(6):542–551.  https://doi.org/10.1007/s10384-004-0122-7 CrossRefPubMedGoogle Scholar
  25. Katayama T, Kyan H, Nakashima M, Rahayu EY, Murakami N, Kuroda H (2000) Involvement of distinct signaling pathways in activin-induced increases in FSH secretion and enlargement of FSH cell population in the rat pituitary. Endocr J 47(3):239–247CrossRefPubMedGoogle Scholar
  26. Kawai Y, Arinze IJ (2006) Valproic acid-induced gene expression through production of reactive oxygen species. Cancer Res 66(13):6563–6569.  https://doi.org/10.1158/0008-5472.CAN-06-0814 CrossRefPubMedGoogle Scholar
  27. Kawano N, Koji T, Hishikawa Y, Murase K, Murata I, Kohno S (2004) Identification and localization of estrogen receptor alpha- and beta-positive cells in adult male and female mouse intestine at various estrogen levels. Histochem Cell Biol 121(5):399–405.  https://doi.org/10.1007/s00418-004-0644-6 CrossRefPubMedGoogle Scholar
  28. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20(8):615–626.  https://doi.org/10.1002/(SICI)1521-1878(199808)20:8%3C615::AID-BIES4%3E3.0.CO;2-H CrossRefPubMedGoogle Scholar
  29. Lagace DC, O’Brien WT, Gurvich N, Nachtigal MW, Klein PS (2004) Valproic acid: how it works. or not. Clin Neurosci Res 4:215–225.  https://doi.org/10.1016/j.cnr.2004.09.013 CrossRefGoogle Scholar
  30. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468.  https://doi.org/10.1200/JCO.2009.22.1291 CrossRefPubMedGoogle Scholar
  31. Leader JE, Wang C, Popov VM, Fu M, Pestell RG (2006) Epigenetics and the estrogen receptor. Ann N Y Acad Sci 1089:73–87.  https://doi.org/10.1196/annals.1386.047 CrossRefPubMedGoogle Scholar
  32. Li XN, Parikh S, Shu Q, Jung HL, Chow CW, Perlaky L, Leung HC, Su J, Blaney S, Lau CC (2004) Phenylbutyrate and phenylacetate induce differentiation and inhibit proliferation of human medulloblastoma cells. Clin Cancer Res 10(3):1150–1159.  https://doi.org/10.1158/1078-0432.CCR-0747-3 CrossRefPubMedGoogle Scholar
  33. Liao X, Liao Y, Zou Y, Li G, Liao C (2015) Epigenetic modifications of histone H3 during the transdifferentiation of Thy-1(+) Lin(−) bone marrow cells into hepatocytes. Mol Med Rep 12(5):7561–7567.  https://doi.org/10.3892/mmr.2015.4384 CrossRefPubMedGoogle Scholar
  34. Liu JC, Baker RE, Chow W, Sun CK, Elsholtz HP (2005) Epigenetic mechanisms in the dopamine D2 receptor-dependent inhibition of the prolactin gene. Mol Endocrinol 19(7):1904–1917CrossRefPubMedGoogle Scholar
  35. Liu T, Kuljica S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32(3):157–165.  https://doi.org/10.1016/j.ctrv.2005.12.006 CrossRefPubMedGoogle Scholar
  36. Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA, Geerts A (2010) Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology 51(2):603–614.  https://doi.org/10.1002/hep.23334 CrossRefPubMedGoogle Scholar
  37. Matsubara M, Harigaya T, Nogami H (2001) Effects of diethylstilbestrol on the cytogenesis of prolactin cells in the pars distalis of the pituitary gland of the mouse. Cell Tissue Res 306(2):301–307.  https://doi.org/10.1007/s004410100442 CrossRefPubMedGoogle Scholar
  38. McLachlan JA, Newbold RR, Bullock BC (1980) Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res 40(11):3988–3999PubMedGoogle Scholar
  39. Merzvinskyte R, Treigyte G, Savickiene J, Magnusson KE, Navakauskiene R (2006) Effects of histone deacetylase inhibitors, sodium phenyl butyrate and vitamin B3, in combination with retinoic acid on granulocytic differentiation of human promyelocytic leukemia HL-60 cells. Ann N Y Acad Sci 1091:356–367. doi: 0.1196/annals.1378.080CrossRefPubMedGoogle Scholar
  40. Mottamal M, Zheng S, Haung TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941.  https://doi.org/10.3390/molecules20033898 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mucha SA, Melen-Mucha G, Godlewski A, Stepien H (2007) Inhibition of estrogen-induced pituitary tumor growth and angiogenesis in Fischer 344 rats by the matrix metalloproteinase inhibitor batimastat. Virchows Arch 450(3):335–341.  https://doi.org/10.1007/s00428-006-0351-x CrossRefPubMedGoogle Scholar
  42. Mukdsi JH, De Paul AL, Munoz S, Aoki A, Torres AI (2004) Immunolocalization of Pit-1 in gonadotroph nuclei is indicative of the transdifferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen. Histochem Cell Biol 121(6):453–462.  https://doi.org/10.1007/s00418-004-0661-5 CrossRefPubMedGoogle Scholar
  43. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, Lee HB (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor beta-1-induced renal injury. Am J Physiol Ren Physiol 297(3):729–739.  https://doi.org/10.1152/ajprenal.00086.2009 CrossRefGoogle Scholar
  44. Nye AC, Rajendran RR, Stenoien DL, Mancini MA, Katzenellenbogen BS, Belmont AS (2002) Alteration of large-scale chromatin structure by estrogen receptor. Mol Cell Biol 22(10):3437–3449.  https://doi.org/10.1128/MCB.22.10.3437-3449.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pradhan M, Baumgarten SC, Bembinster LA, Frasor J (2012) CBP mediates NF-ĸB-dependent histone acetylation and estrogen receptor recruitment to an estrogen response element in the BIRC3 promoter. Mol Cell Biol 32(2):569–575.  https://doi.org/10.1128/MCB.05869-11 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Qiao Y, Wang R, Yang X, Tang K, Jing N (2015) Dual roles of istone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 290(16):2508–2520CrossRefPubMedGoogle Scholar
  47. Ramadhani D, Tofrizal A, Tsukada T, Yashiro T (2015) Histochemical analysis of laminin α chains in diethylstilbestrol-induced prolactinoma in rats. Acta Histochem Cytochem 48(2):69–73.  https://doi.org/10.1267/ahc.14067 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120CrossRefPubMedGoogle Scholar
  49. Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP (2005) Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 33(1):53–61.  https://doi.org/10.1016/j.exphem.2004.09.008 CrossRefPubMedGoogle Scholar
  50. Sakamoto T, Ozaki K, Fujio K, Kajikawa SH, Uesato S, Watanabe K, Tanimura S, Koji T, Kohno M (2013) Blockade of ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models. Biochem Biophys Res Commun 433(4):456–462.  https://doi.org/10.1016/j.bbrc.2013.03.009 CrossRefPubMedGoogle Scholar
  51. Shukuwa K, Izumi S, Hishikawa Y, Ejima K, Inoue S, Muramatsu M, Ouchi Y, Kitaoka T, Koji T (2006) Diethylstilbestrol increases the density of prolactin cells in male mouse pituitary by inducing proliferation of prolactin cells and transdifferentiation of gonadotropic cells. Histochem Cell Biol 126(1):111–123.  https://doi.org/10.1007/s00418-005-0141-6 CrossRefPubMedGoogle Scholar
  52. Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T (2011) Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem 44(4):183–190.  https://doi.org/10.1267/ahc.11027 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Stossi F, Madak-Erdogan Z, Katzenellenbogen BS (2009) Estrogen receptor alpha represses transcription of early target genes via p300 and CtBP1. Mol Cell Biol 29(7):1749–1759.  https://doi.org/10.1128/MCB.01476-08 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Strasak L, Bartova E, Harnicarova A, Galiova G, Krejai J, Kozubek S (2009) H3K9 acetylation and radial chromatin positioning. J Cell Physiol 220(1):91–101.  https://doi.org/10.1002/jcp.21734 CrossRefPubMedGoogle Scholar
  55. Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99(26):17095–17100.  https://doi.org/10.1073/pnas.262658999 CrossRefPubMedGoogle Scholar
  56. Tung EWY, Winn LM (2011) Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol 80(6):979–987.  https://doi.org/10.1124/mol.111.072314 CrossRefPubMedGoogle Scholar
  57. Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D (2010) p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 285(37):28553–28564.  https://doi.org/10.1074/jbc.M110.149393 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Verdon L, Caserta M, Di Mauro E (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83(3):344–353.  https://doi.org/10.1139/o05-041 CrossRefGoogle Scholar
  59. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26(37):5541–5552CrossRefPubMedGoogle Scholar
  60. Yoo EJ, Chung JJ, Choe SS, Kim KH, Kim JB (2006) Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem 281(10):6608–6615.  https://doi.org/10.1074/jbc.M50898220 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nandar Tun
    • 1
  • Yasuaki Shibata
    • 1
  • Myat Thu Soe
    • 1
  • Myo Win Htun
    • 1
  • Takehiko Koji
    • 1
  1. 1.Department of Histology and Cell BiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations