Advertisement

Histochemistry and Cell Biology

, Volume 151, Issue 1, pp 75–83 | Cite as

Gray-level co-occurrence matrix analysis of chromatin architecture in periportal and perivenous hepatocytes

  • Jovana Paunovic
  • Danijela Vucevic
  • Tatjana Radosavljevic
  • Senka Pantic
  • Milena Veskovic
  • Igor PanticEmail author
Original Paper
  • 45 Downloads

Abstract

Periportal hepatocytes (PPHs) and perivenous hepatocytes (PVHs) in standard optical microscopy appear to be morphologically identical. However, the functional properties of these two cell populations and their roles in liver lobules are not the same. Despite significant differences in gene expression between these two hepatocyte populations, it is still unclear whether the differences are present at the higher levels of chromatin organization. In this study, we present results, indicating that periportal and perivenous hepatocytes, when stained using toluidine blue histological dye, have different chromatin textural patterns quantified with gray-level co-occurrence matrix (GLCM) method. Hepatic tissue was obtained from ten male, healthy mice. Chromatin structures were analyzed using GLCM. For each structure, we measured the values of angular second moment, inverse difference moment, GLCM Contrast, GLCM Variance, and GLCM Sum Variance. The results indicate that there is a statistically significant difference in all GLCM mathematical parameters except the contrast. In addition, some chromatin GLCM features were in correlation with serum aminotransferase levels in perivenous, but not in periportal hepatocytes. To the best of our knowledge, this is the first study to test the nuclear morphological differences between hepatocytes using GLCM and to investigate the respective relation with serum liver enzymes.

Keywords

Optical imaging Macromolecule Molecular biology Chromatin Texture 

Notes

Acknowledgements

The authors are grateful to the project 92018 of the Mediterranean Society for Metabolic Syndrome, Diabetes and Hypertension in Pregnancy DEGU (Dr. Igor Pantic, principal author of this manuscript, is the Head of the project), as well as to the projects of the Ministry of Education and Science, Republic of Serbia (projects 175015, 175059, and 41027). Prof. Igor Pantic is also grateful to NSF Center for Advanced Knowledge Enablement, Miami, FL, USA (I. Pantic is an external research associate). The authors are also grateful to Tatijana Paunovic, MA from University of Craiova, for her valuable help for English translation and writing of manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beletti ME, Mello ML (2004) Comparison between the toluidine blue stain and the Feulgen reaction for evaluation of rabbit sperm chromatin condensation and their relationship with sperm morphology. Theriogenology 62(3–4):398–402.  https://doi.org/10.1016/j.theriogenology.2003.10.016 CrossRefGoogle Scholar
  2. Biesterfeld S, Beckers S, Del Carmen Villa Cadenas M, Schramm M (2011) Feulgen staining remains the gold standard for precise DNA image cytometry. Anticancer Res 31(1):53–58Google Scholar
  3. Braeuning A, Ittrich C, Kohle C, Hailfinger S, Bonin M, Buchmann A, Schwarz M (2006) Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J 273(22):5051–5061.  https://doi.org/10.1111/j.1742-4658.2006.05503.x CrossRefGoogle Scholar
  4. Bumbaširević V, Lačković V, Milićević NM, Milićević Ž, Mujović S, Obradović M, Pantić S, Stefanović B, Trpinac D (2007) Histologija. Medicinski fakultet Beograd, BelgradeGoogle Scholar
  5. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100.  https://doi.org/10.1186/gb-2006-7-10-r100 CrossRefGoogle Scholar
  6. Chang P, Gohain M, Yen MR, Chen PY (2018) Computational methods for assessing chromatin hierarchy. Comput Struct Biotechnol J 16:43–53.  https://doi.org/10.1016/j.csbj.2018.02.003 CrossRefGoogle Scholar
  7. Colnot S, Perret C (2011) Liver zonation. In: Monga S (ed) Molecular pathology of liver diseases. molecular pathology library, vol 5. Springer, BostonGoogle Scholar
  8. Cremer C, Szczurek A, Schock F, Gourram A, Birk U (2017) Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods 123:11–32.  https://doi.org/10.1016/j.ymeth.2017.03.019 CrossRefGoogle Scholar
  9. Fatima K, Arooj A, Majeed H (2014) A new texture and shape based technique for improving meningioma classification. Microsc Res Tech 77(11):862–873.  https://doi.org/10.1002/jemt.22409 CrossRefGoogle Scholar
  10. Haralick RSK, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC 3:610–621CrossRefGoogle Scholar
  11. Hardie DC, Gregory TR, Hebert PD (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50(6):735–749CrossRefGoogle Scholar
  12. Jiao K, Li Q-J, Sun W, Wang Z-J (2005) Voltammetric detection of the DNA interaction with toluidine blue. Electroanalysis (17):997–1002CrossRefGoogle Scholar
  13. Joseph GB, Baum T, Carballido-Gamio J, Nardo L, Virayavanich W, Alizai H, Lynch JA, McCulloch CE, Majumdar S, Link TM (2011) Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls–data from the osteoarthritis initiative. Arthritis Res Ther 13(5):R153.  https://doi.org/10.1186/ar3469 CrossRefGoogle Scholar
  14. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180.  https://doi.org/10.1093/bioinformatics/btr095 CrossRefGoogle Scholar
  15. Kietzmann T (2017) Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol 11:622–630.  https://doi.org/10.1016/j.redox.2017.01.012 CrossRefGoogle Scholar
  16. Kim TY, Cho NH, Jeong GB, Bengtsson E, Choi HK (2014) 3D texture analysis in renal cell carcinoma tissue image grading. Comput Math Methods Med 2014:536217.  https://doi.org/10.1155/2014/536217 Google Scholar
  17. Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42(1):71–75CrossRefGoogle Scholar
  18. Lilli RD (1965) Histopathologic technic and practical histochemistry. Mcgraw-Hill Book Company, New YorkGoogle Scholar
  19. Liu B, Yip R, Zhou Z (2012) Chromatin remodeling, DNA damage repair and aging. Curr Genomics 13(7):533–547.  https://doi.org/10.2174/138920212803251373 CrossRefGoogle Scholar
  20. Loizou CP, Petroudi S, Seimenis I, Pantziaris M, Pattichis CS (2014) Quantitative texture analysis of brain white matter lesions derived from T2-weighted MR images in MS patients with clinically isolated syndrome. J Neuroradiol.  https://doi.org/10.1016/j.neurad.2014.05.006 Google Scholar
  21. Maani R, Kalra S, Yang YH (2014) Robust volumetric texture classification of magnetic resonance images of the brain using local frequency descriptor. IEEE Trans Image Process.  https://doi.org/10.1109/TIP.2014.2351620 Google Scholar
  22. Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19(1):37–51.  https://doi.org/10.1007/s10577-010-9177-0 CrossRefGoogle Scholar
  23. Mostaco-Guidolin LB, Ko AC, Wang F, Xiang B, Hewko M, Tian G, Major A, Shiomi M, Sowa MG (2013) Collagen morphology and texture analysis: from statistics to classification. Sci Rep 3:2190.  https://doi.org/10.1038/srep02190 CrossRefGoogle Scholar
  24. Nedelec JF, Yu O, Chambron J, Macher JP (2004) Texture analysis of the brain: from animal models to human applications. Dialogues Clin Neurosci 6(2):227–233Google Scholar
  25. Nielsen B, Albregtsen F, Danielsen HE (2012) Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Cytometry A 81(7):588–601.  https://doi.org/10.1002/cyto.a.22068 CrossRefGoogle Scholar
  26. Pantic I, Pantic S (2012) Germinal center texture entropy as possible indicator of humoral immune response: immunophysiology viewpoint. Mol Imaging Biol 14(5):534–540.  https://doi.org/10.1007/s11307-011-0531-1 CrossRefGoogle Scholar
  27. Pantic I, Pantic S, Paunovic J (2012) Aging increases nuclear chromatin entropy of erythroid precursor cells in mice spleen hematopoietic tissue. Microsc Microanal 18(5):1054–1059.  https://doi.org/10.1017/S1431927612001377 CrossRefGoogle Scholar
  28. Pantic I, Basta-Jovanovic G, Starcevic V, Paunovic J, Suzic S, Kojic Z, Pantic S (2013a) Complexity reduction of chromatin architecture in macula densa cells during mouse postnatal development. Nephrology (Carlton) 18(2):117–124.  https://doi.org/10.1111/nep.12003 CrossRefGoogle Scholar
  29. Pantic I, Paunovic J, Basta-Jovanovic G, Perovic M, Pantic S, Milosevic NT (2013b) Age-related reduction of structural complexity in spleen hematopoietic tissue architecture in mice. Exp Gerontol 48(9):926–932.  https://doi.org/10.1016/j.exger.2013.06.011 CrossRefGoogle Scholar
  30. Pantic I, Dacic S, Brkic P, Lavrnja I, Pantic S, Jovanovic T, Pekovic S (2014) Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture. Microsc Microanal 20(5):1373–1381.  https://doi.org/10.1017/S1431927614012811 CrossRefGoogle Scholar
  31. Pantic I, Dimitrijevic D, Nesic D, Petrovic D (2016a) Gray level co-occurrence matrix algorithm as pattern recognition biosensor for oxidopamine-induced changes in lymphocyte chromatin architecture. J Theor Biol 406:124–128.  https://doi.org/10.1016/j.jtbi.2016.07.018 CrossRefGoogle Scholar
  32. Pantic I, Petrovic D, Paunovic J, Vucevic D, Radosavljevic T, Pantic S (2016b) Age-related reduction of chromatin fractal dimension in toluidine blue-stained hepatocytes. Mech Ageing Dev 157:30–34.  https://doi.org/10.1016/j.mad.2016.07.002 CrossRefGoogle Scholar
  33. Shamir L, Wolkow CA, Goldberg IG (2009) Quantitative measurement of aging using image texture entropy. Bioinformatics 25(23):3060–3063.  https://doi.org/10.1093/bioinformatics/btp571 CrossRefGoogle Scholar
  34. Song CI, Ryu CH, Choi SH, Roh JL, Nam SY, Kim SY (2013) Quantitative evaluation of vocal-fold mucosal irregularities using GLCM-based texture analysis. Laryngoscope.  https://doi.org/10.1002/lary.24151 Google Scholar
  35. Torre C, Perret C, Colnot S (2010) Molecular determinants of liver zonation. Prog Mol Biol Transl Sci 97:127–150.  https://doi.org/10.1016/B978-0-12-385233-5.00005-2 CrossRefGoogle Scholar
  36. Wei L, Gan Q, Ji T (2017) Cervical cancer histology image identification method based on texture and lesion area features. Comput Assist Surg (Abingdon) 22(sup1):186–199.  https://doi.org/10.1080/24699322.2017.1389397 CrossRefGoogle Scholar
  37. Wood JG, Helfand SL (2013) Chromatin structure and transposable elements in organismal aging. Front Genet 4:274.  https://doi.org/10.3389/fgene.2013.00274 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Medicine, Institute of Pathological PhysiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Medicine, Institute of Histology and EmbryologyUniversity of Belgrade Visegradska 26/IIBelgradeSerbia
  3. 3.Laboratory for Cellular Physiology, Institute of Medical Physiology, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  4. 4.University of HaifaHaifaIsrael

Personalised recommendations