Advertisement

Histochemistry and Cell Biology

, Volume 150, Issue 1, pp 83–92 | Cite as

Characterization of the endolysosomal system in human chordoma cell lines: is there a role of lysosomes in chemoresistance of this rare bone tumor?

  • Dagmar Kolb-Lenz
  • Robert FuchsEmail author
  • Birgit Lohberger
  • Ellen Heitzer
  • Katharina Meditz
  • Dominique Pernitsch
  • Elisabeth Pritz
  • Andrea Groselj-Strele
  • Andreas Leithner
  • Bernadette Liegl-Atzwanger
  • Beate Rinner
Short Communication

Abstract

Chordoma is a rare tumor of the bone derived from remnants of the notochord with pronounced chemoresistance. A common feature of the notochord and chordoma cells is distinct vacuolization. Recently, the notochord vacuole was described as a lysosome-related organelle. Since lysosomes are considered as mediators of drug resistance in cancer, we were interested whether they may also play a role in chemoresistance of chordoma. We characterized the lysosomal compartment in chordoma cell lines by cytochemistry, electron microscopy (ELMI) and mutational analysis of genes essential for the physiology of lysosomes. Furthermore, we tested for the first time the cytotoxicity of chloroquine, which targets lysosomes, on chordoma. Cytochemical stainings clearly demonstrated a huge mass of lysosomes in chordoma cell lines with perinuclear accumulation. Also vacuoles in chordoma cells were positive for the lysosomal marker LAMP1 but showed no acidic pH. Genetic analysis detected no apparent mutation associated with known lysosomal pathologies suggesting that vacuolization and the huge lysosomal mass of chordoma cell lines is rather a relict of the notochord than a result of transformation. ELMI investigation of chordoma cells confirmed the presence of large vacuoles, lysosomes and autophagosomes with heterogeneous ultrastructure embedded in glycogen. Interestingly, chordoma cells seem to mobilize cellular glycogen stores via autophagy. Our first preclinical data suggested no therapeutically benefit of chloroquine for chordoma. Even though, chordoma cells are crammed with lysosomes which are according to their discoverer de Duve “cellular suicide bags”. Destabilizing these “suicide bags” might be a promising strategy for the treatment of chordoma.

Keywords

Chordoma Lysosomes Glycogen Glycophagy Chloroquine 

Notes

Acknowledgements

The authors would like to thank Marie-Therese Frisch for her technical assistance. This work was supported by the Medical University of Graz, a grant from the Austrian Science Fund (FWF), P24006 (to RF) and by private donations obtained via a fund-raising campaign kindly initiated by MEFOgraz (to RF). The identity of donors remained completely anonymous for all authors involved, excluding any conflict of interest in this regard. No commercial benefits of any kind have been or will be received from institutions related directly or indirectly to the subject of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

418_2018_1673_MOESM1_ESM.tif (1.8 mb)
Supplementary Figure S1 Chordoma cells are able to perform phagocytosis. Living U-CH2 cells were stained in parallel with Lysotracker® Red and the Hoechst nuclear dye. In the phase contrast view vacuoles (arrow) were visible which showed an acidic pH and contained cellular and nuclear fragments, indicating phagocytotic clearance of dead cells in chordoma cell cultures. Scale bar: 50 μm (TIF 1832 KB)
418_2018_1673_MOESM2_ESM.tif (83 kb)
Supplementary Table 1 Overview of autophagy-lysosomal pathway (ALP) related genes included in mutational analysis. In total 336 ALP-related genes in the chordoma cell lines MUG-CC1 and MUG-Chor1 cell lines were investigated (TIF 83 KB)
418_2018_1673_MOESM3_ESM.tif (184 kb)
Supplementary Table 2 The table shows the summary of results obtained in mutation analysis of genes relevant for the physiology of lysosomes in the MUG-CC1 and MUG-Chor1 cell lines (TIF 184 KB)

References

  1. Aits S, Jäättelä M (2013) Lysosomal cell death at a glance. J Cell Sci 126(Pt 9):1905–1912.  https://doi.org/10.1242/jcs.091181 CrossRefPubMedGoogle Scholar
  2. Aronovich EL, Hackett PB (2015) Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 114(2):83–93.  https://doi.org/10.1016/j.ymgme.2014.09.011 CrossRefPubMedGoogle Scholar
  3. Colombo F, Trombetta E, Cetrangolo P, Maggioni M, Razini P, De Santis F, Torrente Y, Prati D, Torresani E, Porretti L (2014) Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells. PLoS One 9(12):e114787.  https://doi.org/10.1371/journal.pone.0114787 CrossRefPubMedPubMedCentralGoogle Scholar
  4. De Duve C (1959) Subcellular particles. In: Hayashi T (ed) The Ronald Press Co., New York, pp 128–159Google Scholar
  5. Di Fruscio G, Schulz A, De Cegli R, Savarese M, Mutarelli M, Parenti G, Banfi S, Braulke T, Nigro V, Ballabio A (2015) Lysoplex: an efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway. Autophagy 11(6):928–938.  https://doi.org/10.1080/15548627.2015.1043077 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32(18):2866–2868.  https://doi.org/10.1093/bioinformatics/btw230 (Epub 25 Apr 2016) CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ellis K, Bagwell J, Bagnat M (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol 200(5):667–679.  https://doi.org/10.1083/jcb.201212095 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Erlandson RA, Tandler B, Lieberman PH, Higinbotham NL (1968) Ultrastructure of human chordoma. Cancer Res 28:2115–2125PubMedGoogle Scholar
  9. Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, Iwata J, Tanida I, Furuya N, Zheng DM, Tada N, Tanaka K, Kominami E, Ueno T (2011) Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7(7):727–736CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41CrossRefPubMedGoogle Scholar
  11. Fuchs R, Stracke A, Ebner N, Zeller CW, Raninger AM, Schittmayer M, Kueznik T, Absenger-Novak M, Birner-Gruenberger R (2015) The cytotoxicity of the a1-adrenoceptor antagonist prazosin is linked to an endocytotic mechanism equivalent to transport-P. Toxicology 338:17–29.  https://doi.org/10.1016/j.tox.2015.09.008 (Epub 9 Oct 2015) CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gellner V, Tomazic PV, Lohberger B, Meditz K, Heitzer E, Mokry M, Koele W, Leithner A, Liegl-Atzwanger B, Rinner B (2016) Establishment of clival chordoma cell line MUG-CC1 and lymphoblastoid cells as a model for potential new treatment strategies. Sci Rep 6:24195.  https://doi.org/10.1038/srep24195 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gomercić H, Vuković S, Gomercić V, Skrtić D (1991) Histological and histochemical characteristics of the bovine notochord. Int J Dev Biol 35(3):353–358PubMedGoogle Scholar
  14. Greiner-Tollersrud OK, Berg T (2000–2013) Lysosomal storage disorders. Madame Curie Bioscience Database, Landes BioscienceGoogle Scholar
  15. Griner LA et al (2014) High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA 111:2349–2354CrossRefGoogle Scholar
  16. Guo B, Tam A, Santi SA, Parissenti AM (2016) Role of autophagy and lysosomal drug sequestration in acquired resistance to doxorubicin in MCF-7 cells. BMC Cancer 16(1):762CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ho KL (1985) Ecchordosis physaliphora and chordoma: a comparative ultrastructural study. Clin Neuropathol 4(2):77–86PubMedGoogle Scholar
  18. Jho HD, Carrau RL, McLaughlin MR, Somaza SC (1997) Endoscopic transsphenoidal resection of a large chordoma in the posterior fossa. Acta Neurochir (Wien) 139(4):343–348CrossRefGoogle Scholar
  19. Kalamidas SA, Kotoulas OB (2000) Glycogen autophagy in newborn rat hepatocytes. Histol Histopathol 15:1011–1018PubMedGoogle Scholar
  20. Kalamidas SA, Kotoulas OB, Hann AC (2002) Studies on glycogen autophagy: effects of phorbol myristate acetate, ionophore A23187,or phentolamine. Microsc Res Tech 57(6):507–511CrossRefPubMedGoogle Scholar
  21. Kirkegaard T, Jäättelä M (2009) Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793(4):746–754.  https://doi.org/10.1016/j.bbamcr.2008.09.008 CrossRefPubMedGoogle Scholar
  22. Kondomerkos DJ, Kalamidas SA, Kotoulas OB (2004) An electron microscopic and biochemical study of the effects of glucagon on glycogen autophagy in the liver and heart of newborn rats. Microsc Res Tech 63(2):87–93CrossRefPubMedGoogle Scholar
  23. Korolchuk VI, Rubinsztein DC (2011) Regulation of autophagy by lysosomal positioning. Autophagy 7(8):927–928CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kotoulas OB (1986) The effects of cyclic 3′,5′-AMP on the lysosomes of newborn rat hepatocytes. J Ultrastruct Mol Struct Res 97(1–3):210–215CrossRefPubMedGoogle Scholar
  25. Kotoulas OB, Phillips MJ (1971) Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am J PatholGoogle Scholar
  26. Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202(9):631–638 (Epub 16 Jun 2006, review) CrossRefPubMedGoogle Scholar
  27. Kumar A, Singh UK, Chaudhary A (2015) Targeting autophagy to overcome drug resistance in cancer therapy. Future Med Chem 7(12):1535–1542.  https://doi.org/10.4155/fmc.15.88 (Epub 26 Aug 2015) CrossRefPubMedGoogle Scholar
  28. Kuzu OF, Gowda R, Noory MA, Robertson GP (2017) Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer 117(4):513–524.  https://doi.org/10.1038/bjc.2017.200 (Epub 11 Jul 2017) CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee CM, Tannock IF (2006) Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br J Cancer 94(6):863–869.  https://doi.org/10.1038/sj.bjc.6603010 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu Y, Zhou Y, Zhu K (2012) Inhibition of glioma cell lysosome exocytosis inhibits glioma invasion. PLoS One 7(9):e45910.  https://doi.org/10.1371/journal.pone.0045910 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Malicdan MC, Nishino I (2012) Autophagy in lysosomal myopathies. Brain Pathol 22(1):82–88.  https://doi.org/10.1111/j.1750-3639.2011.00543.x CrossRefPubMedGoogle Scholar
  32. Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord 18(7):521–529.  https://doi.org/10.1016/j.nmd.2008.04.010 CrossRefPubMedGoogle Scholar
  33. Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L (2014) Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol 1(1):e29911.  https://doi.org/10.4161/mco.29911 CrossRefPubMedPubMedCentralGoogle Scholar
  34. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM (2001) Chordoma incidence and survival patterns in the united states, 1973–1995. Cancer Causes Control 12(1):1–11CrossRefPubMedGoogle Scholar
  35. Murakami T, Wakamatsu E, Tamahashi N, Takahashi T (1985) The functional significance of human notochord in the development of vertebral column. An electron microscopic study. Tohoku J Exp Med 146(3):321–336CrossRefPubMedGoogle Scholar
  36. Oner AY, Akpek S, Tali T, Ucar M (2009) Giant vertebral notochordal rest: magnetic resonance and diffusion weighted imaging findings. Korean J Radiol 10(3):303–306.  https://doi.org/10.3348/kjr.2009.10.3.303 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, Diss T, Tirabosco R, Flanagan AM (2009) Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 100(9):1406–1414CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rinner B, Froehlich EV, Buerger K, Knausz H, Lohberger B, Scheipl S, Fischer C, Leithner A, Guelly C, Trajanoski S, Szuhai K, Liegl B (2012) Establishment and detailed functional and molecular genetic characterisation of a novel sacral chordoma cell line, MUG-Chor1. Int J Oncol 40(2):443–451PubMedGoogle Scholar
  39. Romeo S, Hogendoorn PC (2006) Brachyury and chordoma: the chondroid–chordoid dilemma resolved? J Pathol 209(2):143–146CrossRefPubMedGoogle Scholar
  40. Rousset M, Chevalier G, Rousset JP, Dussaulx E, Zweibaum A (1979) Presence and cell growth-related variations of glycogen in human colorectal adenocarcinoma cell lines in culture. Cancer Res 39(2 Pt 1):531–534PubMedGoogle Scholar
  41. Rousset M, Zweibaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41:1165–1170PubMedGoogle Scholar
  42. Rousset M, Paris H, Chevalier G, Terrain B, Murat JC, Zweibaum A (1984) Growth-related enzymatic control of glycogen metabolism in cultured human tumor cells. Cancer Res 44(1):154–160PubMedGoogle Scholar
  43. Saftig P (2005) Lysosomes. Medical intelligence unit. Springer, BerlinGoogle Scholar
  44. Salisbury JR (1993) The pathology of the human notochord. J Pathol 171(4):253–255 (review) CrossRefPubMedGoogle Scholar
  45. Sands MS, Haskins ME (2008) CNS-directed gene therapy for lysosomal storage diseases. Acta Paediatr Suppl 97:22–27CrossRefGoogle Scholar
  46. Scheil S, Brüderlein S, Liehr T, Starke H, Herms J, Schulte M, Möller P (2001) Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosomes Cancer 32(3):203–211CrossRefPubMedGoogle Scholar
  47. Stacchiotti S, Sommer J, Chordoma Global Consensus Group Building (2015) A global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol 16(2):e71–e83.  https://doi.org/10.1016/S1470-2045(14)71190-8 CrossRefPubMedGoogle Scholar
  48. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4(10):e838.  https://doi.org/10.1038/cddis.2013.350 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tan X, Hu L, Luquette LJ, Gao G, Liu Y, Qu H, Xi R, Lu ZJ, Park PJ, Elledge SJ (2012) Systematic identification of synergistic drug pairs targeting HIV. Nat Biotechnol 30(11):1125–1130CrossRefPubMedPubMedCentralGoogle Scholar
  50. Turk B, Turk V (2009) Lysosomes as “Suicide bags” in cell death: myth or reality? J Biol Chem 284(33):21783–21787.  https://doi.org/10.1074/jbc.R109.023820 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Umnova MM, Seene TP, Pehme AIa (2000) Ultrastructure of type 2A extrafusal muscle fibers and intrafusal fibers of the muscle spindle (m. quadriceps femoris) from the adult rat after long-term swimming. Izv Akad Nauk Ser Biol 6:658–671Google Scholar
  52. Wilson DB, Hendrickx AG (1990) Cytochemical analysis of the notochord in early rhesus monkey embryos. Anat Rec 228(4):431–436CrossRefPubMedGoogle Scholar
  53. Yadav D, Yadav S, Chisti MM (2015) A rare case of metastasis of small cell carcinoma of cervix to breast. World J Oncol 6(1):301–303.  https://doi.org/10.14740/wjon858w CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhitomirsky B, Assaraf YG (2016) Lysosomes as mediators of drug resistance in cancer. 24:23–33.  https://doi.org/10.1016/j.drup.2015.11.004
  55. Zois CE, Harris AL (2016) Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med (Berl) 94(2):137–154.  https://doi.org/10.1007/s00109-015-1377-9 (Epub 17 Feb 2016) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dagmar Kolb-Lenz
    • 1
    • 2
  • Robert Fuchs
    • 3
    Email author
  • Birgit Lohberger
    • 4
  • Ellen Heitzer
    • 5
  • Katharina Meditz
    • 6
  • Dominique Pernitsch
    • 1
  • Elisabeth Pritz
    • 1
  • Andrea Groselj-Strele
    • 1
  • Andreas Leithner
    • 4
  • Bernadette Liegl-Atzwanger
    • 7
  • Beate Rinner
    • 6
  1. 1.Center of Medical ResearchMedical University of GrazGrazAustria
  2. 2.Chair of Cell Biology, Histology and EmbryologyGottfried Schatz Research CenterGrazAustria
  3. 3.Chair of Immunology and Pathophysiology, Otto Loewi Research CenterMedical University of GrazGrazAustria
  4. 4.Department of Orthopaedics and TraumaMedical University of GrazGrazAustria
  5. 5.Diagnostic & Research Institute of Human Genetics, Diagnostic and Research Center for Molecular BiomedicineMedical University of GrazGrazAustria
  6. 6.Division of Biomedical ResearchMedical University of GrazGrazAustria
  7. 7.Diagnostic & Research Institute of Pathology, Diagnostic and Research Center for Molecular BioMedicineMedical University of GrazGrazAustria

Personalised recommendations