Advertisement

Histochemistry and Cell Biology

, Volume 149, Issue 1, pp 15–30 | Cite as

The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor–endothelial cell interactions

  • Maryam Rezaei
  • Jiahui Cao
  • Katrin Friedrich
  • Björn Kemper
  • Oliver Brendel
  • Marianne Grosser
  • Manuela Adrian
  • Gustavo Baretton
  • Georg Breier
  • Hans-Joachim SchnittlerEmail author
Original Paper

Abstract

The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

Keywords

Breast cancer VE-cadherin Tumor progression Epithelial–mesenchymal transition Cell migration 

Notes

Acknowledgements

The authors are grateful for highly sufficient assistance by Annelie Ahle, Vesna Bojovic and Christine Schimp. We thank Martin Muermann for MS editing and to the “Biobank” of University Cancer Center Dresden (UCC) for supporting the preparation of tissue microarray. We also thank Anke Klawitter and Thomas Brock for sharing unpublished results. This work was supported by grants from the German Research Council to H.S. (DFG INST 2105/24-1 and SCHN 430/6-2). The Excellence Cluster Cells In Motion (CIM) of the WWU-Münster, flexible fund to H.S (FF-2014-15).

Compliance with ethical standards

Conflict of interest

None of the authors have financial or other types of competing interests.

Supplementary material

418_2017_1619_MOESM1_ESM.pdf (85 kb)
Supplementary material 1 (PDF 85 KB)
418_2017_1619_MOESM2_ESM.pdf (445 kb)
Supplementary material 2 (PDF 445 KB)
418_2017_1619_MOESM3_ESM.psd (25.5 mb)
Supplementary material 3 (PSD 26121 KB)
418_2017_1619_MOESM4_ESM.psd (11.2 mb)
Supplementary material 4 (PSD 11516 KB)
418_2017_1619_MOESM5_ESM.psd (3.6 mb)
Supplementary material 5 (PSD 3711 KB)
418_2017_1619_MOESM6_ESM.psd (11.1 mb)
Supplementary material 6 (PSD 11336 KB)
418_2017_1619_MOESM7_ESM.psd (6.2 mb)
Supplementary material 7 (PSD 6310 KB)
418_2017_1619_MOESM8_ESM.psd (2.1 mb)
Supplementary material 8 (PSD 2162 KB)

References

  1. Abu Taha A, Taha M, Seebach J, Schnittler HJ (2014) ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol Biol Cell 25(2):245–256.  https://doi.org/10.1091/mbc.E13-07-0404 CrossRefPubMedGoogle Scholar
  2. Alfano D, Votta G, Schulze A, Downward J, Caputi M, Stoppelli MP, Iaccarino I (2010) Modulation of cellular migration and survival by c-Myc through the downregulation of urokinase (uPA) and uPA receptor. Mol Cell Biol 30(7):1838–1851.  https://doi.org/10.1128/MCB.01442-09 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baumeister U, Funke R, Ebnet K, Vorschmitt H, Koch S, Vestweber D (2005) Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 24(9):1686–1695CrossRefPubMedPubMedCentralGoogle Scholar
  4. Becker SF, Mayor R, Kashef J (2013) Cadherin-11 mediates contact inhibition of locomotion during Xenopus neural crest cell migration. PloS One 8(12):e85717.  https://doi.org/10.1371/journal.pone.0085717 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bendas G, Borsig L (2012) Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012:676731.  https://doi.org/10.1155/2012/676731 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bettenworth D, Lenz P, Krausewitz P, Bruckner M, Ketelhut S, Domagk D, Kemper B (2014) Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS One 9(9):e107317.  https://doi.org/10.1371/journal.pone.0107317 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bill R, Christofori G (2015) The relevance of EMT in breast cancer metastasis: correlation or causality? FEBS Lett 589(14):1577–1587.  https://doi.org/10.1016/j.febslet.2015.05.002 CrossRefPubMedGoogle Scholar
  8. Breier G, Grosser M, Rezaei M (2014) Endothelial cadherins in cancer. Cell Tissue Res 355(3):523–527.  https://doi.org/10.1007/s00441-014-1851-7 CrossRefPubMedGoogle Scholar
  9. Breslin JW, Daines DA, Doggett TM, Kurtz KH, Souza-Smith FM, Zhang XE, Wu MH, Yuan SY (2016) Rnd3 as a novel target to ameliorate microvascular leakage. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.116.003336 (ARTN e003336) PubMedPubMedCentralGoogle Scholar
  10. Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J, Introna M, Gulino D, Lampugnani MG, Dejana E (1995) Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15(8):1229–1239CrossRefPubMedGoogle Scholar
  11. Cao J, Ehling M, März S, Seebach J, Tarbashevich K, Sixta T, Pitulescu ME, Werner A, Flach B, Montanez E, Raz E, Adams RH, Schnittler H (2017) Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun (final revision) Google Scholar
  12. Cavallaro U, Christofori G (2004) Multitasking in tumor progression: signaling functions of cell adhesion molecules. Ann N Y Acad Sci 1014:58–66CrossRefPubMedGoogle Scholar
  13. Christofori G (2003) Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO J 22(10):2318–2323.  https://doi.org/10.1093/emboj/cdg228 CrossRefPubMedPubMedCentralGoogle Scholar
  14. David JM, Rajasekaran AK (2012) Dishonorable discharge: the oncogenic roles of cleaved E-cadherin fragments. Cancer Res 72(12):2917–2923.  https://doi.org/10.1158/0008-5472.can-11-3498 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dieckmann-Schuppert A, Schnittler H-J (1997) A simple assay for quantification of protein in tissue sections, cell cultures, and cell homogenates, and of protein immobilized on solid surfaces. Cell Tissue Res 288(1):119–126.  https://doi.org/10.1007/s004410050799 CrossRefPubMedGoogle Scholar
  16. Fry SA, Sinclair J, Timms JF, Leathem AJ, Dwek MV (2013) A targeted glycoproteomic approach identifies cadherin-5 as a novel biomarker of metastatic breast cancer. Cancer Lett 328(2):335–344.  https://doi.org/10.1016/j.canlet.2012.10.011 CrossRefPubMedGoogle Scholar
  17. Fry SA, Robertson CE, Swann R, Dwek MV (2016) Cadherin-5: a biomarker for metastatic breast cancer with optimum efficacy in oestrogen receptor-positive breast cancers with vascular invasion. Br J Cancer 114(9):1019–1026.  https://doi.org/10.1038/bjc.2016.66 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giampietro C, Taddei A, Corada M, Sarra-Ferraris GM, Alcalay M, Cavallaro U, Orsenigo F, Lampugnani MG, Dejana E (2012) Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood 119(9):2159–2170.  https://doi.org/10.1182/blood-2011-09-381012 CrossRefPubMedGoogle Scholar
  19. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26(5):441–454.  https://doi.org/10.1016/j.devcel.2013.08.020 CrossRefPubMedGoogle Scholar
  20. Giepmans BN, van Ijzendoorn SC (2009) Epithelial cell-cell junctions and plasma membrane domains. Biochimica et biophysica acta 1788(4):820–831.  https://doi.org/10.1016/j.bbamem.2008.07.015 CrossRefPubMedGoogle Scholar
  21. Givant-Horwitz V, Davidson B, Reich R (2004) Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res 64(10):3572–3579.  https://doi.org/10.1158/0008-5472.CAN-03-3424 CrossRefPubMedGoogle Scholar
  22. Goldmann WH (2016) Role of vinculin in cellular mechanotransduction. Cell Biol Int 40(3):241–256.  https://doi.org/10.1002/cbin.10563 CrossRefPubMedGoogle Scholar
  23. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6(8):622–634CrossRefPubMedGoogle Scholar
  24. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148(4):779–790CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163CrossRefPubMedGoogle Scholar
  26. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 98(14):8018–8023CrossRefPubMedPubMedCentralGoogle Scholar
  27. Herren B, Levkau B, Raines EW, Ross R (1998) Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 9(6):1589–1601CrossRefPubMedPubMedCentralGoogle Scholar
  28. Herzig M, Savarese F, Novatchkova M, Semb H, Christofori G (2007) Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene 26(16):2290–2298.  https://doi.org/10.1038/sj.onc.1210029 CrossRefPubMedGoogle Scholar
  29. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196(5):641–652.  https://doi.org/10.1083/jcb.201108120 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kallioniemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10(7):657–662CrossRefPubMedGoogle Scholar
  31. Kemper B, Carl D, Höink A, von Bally G, Bredebusch I, Schnekenburger J (2006) Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells. Proc SPIE 6191:61910TCrossRefGoogle Scholar
  32. Kemper B, Bauwens A, Vollmer A, Ketelhut S, Langehanenberg P, Muthing J, Karch H, von Bally G (2010) Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. J Biomed Opt 15(3):036009.  https://doi.org/10.1117/1.3431712 CrossRefPubMedGoogle Scholar
  33. Kronstein R, Seebach J, Grossklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, Schnittler HJ (2012) Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res 93(1):130–140.  https://doi.org/10.1093/cvr/cvr256 CrossRefPubMedGoogle Scholar
  34. Labelle M, Schnittler HJ, Aust DE, Friedrich K, Baretton G, Vestweber D, Breier G (2008) Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res 68(5):1388–1397CrossRefPubMedGoogle Scholar
  35. Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118(6):1511–1522CrossRefPubMedGoogle Scholar
  36. Lehn S, Tobin NP, Berglund P, Nilsson K, Sims AH, Jirstrom K, Harkonen P, Lamb R, Landberg G (2010) Down-regulation of the oncogene cyclin D1 increases migratory capacity in breast cancer and is linked to unfavorable prognostic features. Am J Pathol 177(6):2886–2897.  https://doi.org/10.2353/ajpath.2010.100303 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li Z, Wang C, Jiao X, Lu Y, Fu M, Quong AA, Dye C, Yang J, Dai M, Ju X, Zhang X, Li A, Burbelo P, Stanley ER, Pestell RG (2006) Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol 26(11):4240–4256.  https://doi.org/10.1128/MCB.02124-05 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu H, Radisky DC, Yang D, Xu R, Radisky ES, Bissell MJ, Bishop JM (2012) MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits. Nat Cell Biol 14(6):567–574.  https://doi.org/10.1038/ncb2491 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mbalaviele G, Dunstan CR, Sasaki A, Williams PJ, Mundy GR, Yoneda T (1996) E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model. Cancer Res 56(17):4063–4070PubMedGoogle Scholar
  40. Morris SL, Huang S (2016) Crosstalk of the Wnt/beta-catenin pathway with other pathways in cancer cells. Genes Dis 3(1):41–47.  https://doi.org/10.1016/j.gendis.2015.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nelson CM, Chen CS (2003) VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci 116(Pt 17):3571–3581.  https://doi.org/10.1242/jcs.00680 CrossRefPubMedGoogle Scholar
  42. Nelson CM, Pirone DM, Tan JL, Chen CS (2004) Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol Biol Cell 15(6):2943–2953CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147(3):631–644CrossRefPubMedPubMedCentralGoogle Scholar
  44. Odenthal-Schnittler M, Schnittler HJ, Kemper B (2016) Online quantitative phase imaging of vascular endothelial cells under fluid shear stress utilizing digital holographic microscopy. Proc SPIE 9718:97180UCrossRefGoogle Scholar
  45. Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, Arihiro K, Kataoka T, Okajima M, Asahara T (2005) Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep 14(6):1437–1443PubMedGoogle Scholar
  46. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal CCS 8:23.  https://doi.org/10.1186/1478-811X-8-23 CrossRefPubMedGoogle Scholar
  47. Rezaei M, Friedrich K, Wielockx B, Kuzmanov A, Kettelhake A, Labelle M, Schnittler H, Baretton G, Breier G (2012) Interplay between neural-cadherin and vascular endothelial-cadherin in breast cancer progression. Breast Cancer Res BCR 14(6):R154.  https://doi.org/10.1186/bcr3367 CrossRefPubMedGoogle Scholar
  48. Schnittler HJ, Schmandra T, Drenckhahn D (1998) Correlation of endothelial vimentin content with hemodynamic parameters. Histochem Cell Biol 110(2):161–167CrossRefPubMedGoogle Scholar
  49. Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ (2000) Endothelial barrier function under laminar fluid shear stress. Lab Invest 80(12):1819–1831CrossRefPubMedGoogle Scholar
  50. Seebach J, Abu Taha A, Lenk J, Lindemann N, Jiang XY, Brinkmann K, Bogdan S, Schnittler HJ (2015) The CellBorderTracker, a novel tool to quantitatively analyze spatiotemporal endothelial junction dynamics at the subcellular level. Histochem Cell Biol 144(6):517–532.  https://doi.org/10.1007/s00418-015-1357-8 CrossRefPubMedGoogle Scholar
  51. Sridharan S, Mir M, Popescu G (2011) Simultaneous optical measurements of cell motility and growth. Biomed Opt Express 2(10):2815–2820.  https://doi.org/10.1364/BOE.2.002815 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sumida GM, Tomita TM, Shih W, Yamada S (2011) Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion. BMC Cell Biol 12:48.  https://doi.org/10.1186/1471-2121-12-48 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Swarbrick A, Akerfeldt MC, Lee CS, Sergio CM, Caldon CE, Hunter LJ, Sutherland RL, Musgrove EA (2005) Regulation of cyclin expression and cell cycle progression in breast epithelial cells by the helix-loop-helix protein Id1. Oncogene 24(3):381–389.  https://doi.org/10.1038/sj.onc.1208188 CrossRefPubMedGoogle Scholar
  54. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10(8):923–934.  https://doi.org/10.1038/ncb1752 CrossRefPubMedGoogle Scholar
  55. Tobin NP, Sims AH, Lundgren KL, Lehn S, Landberg G (2011) Cyclin D1, Id1 and EMT in breast cancer. BMC Cancer 11:417.  https://doi.org/10.1186/1471-2407-11-417 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Valiron O, Chevrier V, Usson Y, Breviario F, Job D, Dejana E (1996) Desmoplakin expression and organization at human umbilical vein endothelial cell-to-cell junctions. J Cell Sci 109(Pt 8):2141–2149PubMedGoogle Scholar
  57. van Roy F (2014) Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14(2):121–134.  https://doi.org/10.1038/nrc3647 CrossRefPubMedGoogle Scholar
  58. Van Mater D, Kolligs FT, Dlugosz AA, Fearon ER (2003) Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev 17(10):1219–1224.  https://doi.org/10.1101/gad.1076103 CrossRefPubMedPubMedCentralGoogle Scholar
  59. van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Egbrink MG, Tran MG, Sciot R, Hauben E, Hogendoorn PC, Delattre O, Maxwell PH, Hendrix MJ, Griffioen AW (2005) Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 65(24):11520–11528.  https://doi.org/10.1158/0008-5472.CAN-05-2468 CrossRefPubMedGoogle Scholar
  60. Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ (2005) Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 79(16):10442–10450CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wegener J, Seebach J (2014) Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches. Cell Tissue Res 355(3):485–514.  https://doi.org/10.1007/s00441-014-1810-3 CrossRefPubMedGoogle Scholar
  62. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol Off J Am Soc Clin Oncol 31(31):3997–4013.  https://doi.org/10.1200/JCO.2013.50.9984 CrossRefGoogle Scholar
  63. Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60(9):2504–2511PubMedGoogle Scholar
  64. Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, Dejana E, Faundez V, Kowalczyk AP (2005) p120-Catenin regulates Clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell 16(11):5141–5151CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28(8):740–749.  https://doi.org/10.1002/hed.20382 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Maryam Rezaei
    • 1
  • Jiahui Cao
    • 1
  • Katrin Friedrich
    • 2
  • Björn Kemper
    • 3
  • Oliver Brendel
    • 2
  • Marianne Grosser
    • 2
  • Manuela Adrian
    • 1
  • Gustavo Baretton
    • 2
  • Georg Breier
    • 4
  • Hans-Joachim Schnittler
    • 1
    Email author
  1. 1.Institute of Anatomy and Vascular BiologyWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institute of Pathology, Medical Faculty DresdenDresdenGermany
  3. 3.Biomedical Technology CenterWestfälische Wilhelms-Universität MünsterMünsterGermany
  4. 4.Department of Psychiatry and PsychotherapyTU DresdenDresdenGermany

Personalised recommendations