Histochemistry and Cell Biology

, Volume 148, Issue 4, pp 345–357 | Cite as

Characterization of OATP1B3 and OATP2B1 transporter expression in the islet of the adult human pancreas

  • Michelle Kim
  • Perri Deacon
  • Rommel G. Tirona
  • Richard B. Kim
  • Christopher L. Pin
  • Henriette E. Meyer zu Schwabedissen
  • Rennian Wang
  • Ute I. SchwarzEmail author
Original Paper


Organic anion-transporting polypeptides (OATPs) are membrane proteins that mediate cellular uptake of structurally diverse endogenous and exogenous compounds, including bile salts, thyroid and sex hormones, pharmacological agents, and toxins. Roles of OATPs in human liver are well established. Our recent report suggested the presence of the hepatic transporter OATP1B3 in human β cells. The aim of this study was to better characterize cellular localization and interindividual variation in OATP1B3 expression in human adult islets as a function of age, sex, and pancreatic disease, and to assess the expression of other OATPs. High transcript levels of OATP1B3, OATP2B1, OATP1A2, but not OATP1B1 were observed in isolated human adult islets. While OATP1B3 protein expression was variable, the carrier co-localized more frequently with glucagon-positive α cells than insulin-positive β cells in islets of normal pancreatic tissues from ten subjects using dual immunostaining. Moreover, OATP1B3 co-staining with endocrine cells was two- to three-fold higher in older (≥60 years) than younger (<60 years) subjects. In comparison, in a subset of three individuals, OATP2B1 was primarily found in β cells, suggesting a distinct expression pattern for OATP1B3 and OATP2B1 in islets. Abundant OATP1B3 staining was also observed in islet as well as ductal cells of diseased tissues of patients with pancreatitis or pancreatic adenocarcinoma. Considering the abundance of key OATP carriers in β and α cells, potential implications of OATP transport in islet cell function may be suggested. Future studies are needed to gain insights into their specific endocrine roles as well as pharmacological relevance.


Membrane transporters Organic anion transport protein Human pancreas Islet Insulin secretion 



This work was supported by the Western Strategic Support for CIHR Success Seed Grant (R5193A01) of the University of Western Ontario and the Internal Research Fund (IRF) Award (LHR F0565) of the Lawson Health Research Institute, London, Ontario, Canada.

Compliance with ethical standards

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Supplementary material

418_2017_1580_MOESM1_ESM.pdf (903 kb)
Supplementary Fig. 1 Control tissue sections for immunofluorescent (IF) or immunohistochemistry stainings (IHC) of OATP1B3 and OATP2B1. a No primary antibody control for OATP1B3 stainings using pancreatic sections of 2 subjects. b Anti-OATP1B3 staining (positive control) and no primary antibody (negative) control in liver tissue sections. c Anti-OATP2B1 staining (positive control) and no primary antibody (negative) control in duodenum tissue sections derived from intestinal biopsies. (PDF 903 kb)
418_2017_1580_MOESM2_ESM.pdf (581 kb)
Supplementary Fig. 2 Specificity of OATP1B3 and OATP2B1 antibodies after heterologous expression of OATPs in HeLa cells as described in Methods. a IF staining for OATP1B3 and OATP2B1 in HeLa cells overexpressing OATPs grown on culture slides.(PDF 581 kb)
418_2017_1580_MOESM3_ESM.pdf (839 kb)
Supplementary Fig. 3 OATP1B3 immunocytochemistry staining of normal adult pancreas demonstrating ductal cell staining. OATP1B3 positive cells are highlighted with white arrows. Anti-elastin staining was performed to differentiate between pancreatic ducts (a) and blood vessels (b). (PDF 839 kb)
418_2017_1580_MOESM4_ESM.docx (18 kb)
Supplementary material 4 (DOCX 18 kb)


  1. Abe M, Toyohara T, Ishii A, Suzuki T, Noguchi N, Akiyama Y, Shiwaku HO, Nakagomi-Hagihara R, Zheng G, Shibata E, Souma T, Shindo T, Shima H, Takeuchi Y, Mishima E, Tanemoto M, Terasaki T, Onogawa T, Unno M, Ito S, Takasawa S, Abe T (2010) The HMG-CoA reductase inhibitor pravastatin stimulates insulin secretion through organic anion transporter polypeptides. Drug Metab Pharmacokinet 25(3):274–282. pii:JST.JSTAGE/dmpk/25.274 CrossRefPubMedGoogle Scholar
  2. Ahren B, Holst JJ, Efendic S (2000) Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab 85(3):1043–1048. doi: 10.1210/jcem.85.3.6431 PubMedGoogle Scholar
  3. Arda HE, Li L, Tsai J, Torre EA, Rosli Y, Peiris H, Spitale RC, Dai C, Gu X, Qu K, Wang P, Wang J, Grompe M, Scharfmann R, Snyder MS, Bottino R, Powers AC, Chang HY, Kim SK (2016) Age-dependent pancreatic gene regulation reveals mechanisms governing human beta cell function. Cell Metab 23(5):909–920. doi: 10.1016/j.cmet.2016.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Badee J, Achour B, Rostami-Hodjegan A, Galetin A (2015) Meta-analysis of expression of hepatic organic anion-transporting polypeptide (OATP) transporters in cellular systems relative to human liver tissue. Drug Metab Dispos 43(4):424–432. doi: 10.1124/dmd.114.062034 CrossRefPubMedGoogle Scholar
  5. Bai L, Zhang X, Ghishan FK (2003) Characterization of vesicular glutamate transporter in pancreatic alpha-and beta-cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol 284(5):G808–G814. doi: 10.1152/ajpgi.00333.200200333.2002 CrossRefPubMedGoogle Scholar
  6. Baldwin GS, Shulkes A (2007) CCK receptors and cancer. Curr Top Med Chem 7(12):1232–1238CrossRefPubMedGoogle Scholar
  7. Blanchet E, Bertrand C, Annicotte JS, Schlernitzauer A, Pessemesse L, Levin J, Fouret G, Feillet-Coudray C, Bonafos B, Fajas L, Cabello G, Wrutniak-Cabello C, Casas F (2012) Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis. FASEB J 26(1):40–50. doi: 10.1096/fj.11-186841 CrossRefPubMedGoogle Scholar
  8. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110CrossRefPubMedGoogle Scholar
  9. Byrne MM, Sturis J, Fajans SS, Ortiz FJ, Stoltz A, Stoffel M, Smith MJ, Bell GI, Halter JB, Polonsky KS (1995) Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 44(6):699–704CrossRefPubMedGoogle Scholar
  10. DeGorter MK, Xia CQ, Yang JJ, Kim RB (2012) Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 52:249–273. doi: 10.1146/annurev-pharmtox-010611-134529 CrossRefPubMedGoogle Scholar
  11. Dolensek J, Rupnik MS, Stozer A (2015) Structural similarities and differences between the human and the mouse pancreas. Islets 7(1):e1024405. doi: 10.1080/19382014.2015.1024405 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Durmus S, van Hoppe S, Schinkel AH (2016) The impact of organic anion-transporting polypeptides (OATPs) on disposition and toxicity of antitumor drugs: insights from knockout and humanized mice. Drug Resist Updates 27:72–88. doi: 10.1016/j.drup.2016.06.005 CrossRefGoogle Scholar
  13. Geisler JC, Corbin KL, Li Q, Feranchak AP, Nunemaker CS, Li C (2013) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154(2):675–684. doi: 10.1210/en.2012-1818 CrossRefPubMedGoogle Scholar
  14. Geng X, Li L, Watkins S, Robbins PD, Drain P (2003) The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes 52(3):767–776CrossRefPubMedGoogle Scholar
  15. Glaeser H, Bailey DG, Dresser GK, Gregor JC, Schwarz UI, McGrath JS, Jolicoeur E, Lee W, Leake BF, Tirona RG, Kim RB (2007) Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin Pharmacol Ther 81(3):362–370. doi: 10.1038/sj.clpt.6100056 CrossRefPubMedGoogle Scholar
  16. Hagenbuch B, Meier PJ (2004) Organic anion-transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447(5):653–665. doi: 10.1007/s00424-003-1168-y CrossRefPubMedGoogle Scholar
  17. Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34(2–3):396–412. doi: 10.1016/j.mam.2012.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hajri A, Damge C (1998) Effects of cholecystokinin octapeptide on a pancreatic acinar carcinoma in the rat. Pharm Res 15(11):1767–1774CrossRefPubMedGoogle Scholar
  19. Harries LW, Brown JE, Gloyn AL (2009) Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One 4(11):e7855. doi: 10.1371/journal.pone.0007855 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ (2001) Hepatocyte nuclear factor 4 alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21(4):1393–1403. doi: 10.1128/MCB.21.4.1393-1403.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hays A, Apte U, Hagenbuch B (2013) Organic anion-transporting polypeptides expressed in pancreatic cancer may serve as potential diagnostic markers and therapeutic targets for early stage adenocarcinomas. Pharm Res 30(9):2260–2269. doi: 10.1007/s11095-012-0962-7 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130(6):1793–1806. doi: 10.1053/j.gastro.2006.02.034 CrossRefPubMedGoogle Scholar
  23. Ianculescu AG, Friesema EC, Visser TJ, Giacomini KM, Scanlan TS (2010) Transport of thyroid hormones is selectively inhibited by 3-iodothyronamine. Mol BioSyst 6(8):1403–1410. doi: 10.1039/b926588k CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ihara A, Yamagata K, Nammo T, Miura A, Yuan M, Tanaka T, Sladek FM, Matsuzawa Y, Miyagawa J, Shimomura I (2005) Functional characterization of the HNF4alpha isoform (HNF4alpha8) expressed in pancreatic beta-cells. Biochem Biophys Res Commun 329(3):984–990. doi: 10.1016/j.bbrc.2005.02.072 CrossRefPubMedGoogle Scholar
  25. Iusuf D, van de Steeg E, Schinkel AH (2012) Functions of OATP1A and 1B transporters in vivo: insights from mouse models. Trends Pharmacol Sci 33(2):100–108. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  26. Kloster-Jensen K, Vethe NT, Bremer S, Abadpour S, Korsgren O, Foss A, Bergan S, Scholz H (2015) Intracellular sirolimus concentration is reduced by tacrolimus in human pancreatic islets in vitro. Transpl Int 28(10):1152–1161. doi: 10.1111/tri.12617 CrossRefPubMedGoogle Scholar
  27. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, Kim RB, Tirona RG (2010) Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res 106(2):297–306. doi: 10.1161/CIRCRESAHA.109.203596 CrossRefPubMedGoogle Scholar
  28. Knauer MJ, Girdwood AJ, Kim RB, Tirona RG (2013) Transport function and transcriptional regulation of a liver-enriched human organic anion transporting polypeptide 2B1 transcriptional start site variant. Mol Pharmacol 83(6):1218–1228. doi: 10.1124/mol.112.083618 CrossRefPubMedGoogle Scholar
  29. Konduri S, Schwarz RE (2007) Estrogen receptor beta/alpha ratio predicts response of pancreatic cancer cells to estrogens and phytoestrogens. J Surg Res 140(1):55–66. doi: 10.1016/j.jss.2006.10.015 CrossRefPubMedGoogle Scholar
  30. Kounnis V, Ioachim E, Svoboda M, Tzakos A, Sainis I, Thalhammer T, Steiner G, Briasoulis E (2011) Expression of organic anion-transporting polypeptides 1B3, 1B1, and 1A2 in human pancreatic cancer reveals a new class of potential therapeutic targets. Onco Targets Ther 4:27–32. doi: 10.2147/OTT.S16706 PubMedPubMedCentralGoogle Scholar
  31. Krishnamurthy M, Li J, Fellows GF, Rosenberg L, Goodyer CG, Wang R (2011) Integrin {alpha}3, but not {beta}1, regulates islet cell survival and function via PI3 K/Akt signaling pathways. Endocrinology 152(2):424–435. doi: 10.1210/en.2010-0877 CrossRefPubMedGoogle Scholar
  32. Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B (2001) Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120(2):525–533CrossRefPubMedGoogle Scholar
  33. Kuntz E, Pinget M, Damge P (2004) Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. JOP 5(6):464–475PubMedGoogle Scholar
  34. Lancaster CS, Sprowl JA, Walker AL, Hu S, Gibson AA, Sparreboom A (2013) Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics. Mol Cancer Ther 12(8):1537–1544. doi: 10.1158/1535-7163.MCT-12-0926 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, Leake BF, Kim RB (2005) Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem 280(10):9610–9617. doi: 10.1074/jbc.M411092200 CrossRefPubMedGoogle Scholar
  36. Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14(8):543–560. doi: 10.1038/nrd4626 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Linnemann AK, Davis DB (2016) Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity. J Diabetes Investig 7(Suppl 1):44–49. doi: 10.1111/jdi.12465JDI12465 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lu H, Gonzalez FJ, Klaassen C (2010) Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha. Toxicol Sci 118(2):380–390. doi: 10.1093/toxsci/kfq280 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mastracci TL, Evans-Molina C (2014) Pancreatic and Islet Development and Function: The Role of Thyroid Hormone. J Endocrinol Diabetes Obes 2(3):1044Google Scholar
  40. Meyer zu Schwabedissen HE, Boettcher K, Steiner T, Schwarz UI, Keiser M, Kroemer HK, Siegmund W (2014) OATP1B3 is expressed in pancreatic beta-islet cells and enhances the insulinotropic effect of the sulfonylurea derivative glibenclamide. Diabetes 63(2):775–784. doi: 10.2337/db13-1005 CrossRefPubMedGoogle Scholar
  41. Miura A, Yamagata K, Kakei M, Hatakeyama H, Takahashi N, Fukui K, Nammo T, Yoneda K, Inoue Y, Sladek FM, Magnuson MA, Kasai H, Miyagawa J, Gonzalez FJ, Shimomura I (2006) Hepatocyte nuclear factor-4 alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem 281(8):5246–5257. doi: 10.1074/jbc.M507496200 CrossRefPubMedGoogle Scholar
  42. Obaidat A, Roth M, Hagenbuch B (2012) The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 52:135–151. doi: 10.1146/annurev-pharmtox-010510-100556 CrossRefPubMedGoogle Scholar
  43. Prentice KJ, Luu L, Allister EM, Liu Y, Jun LS, Sloop KW, Hardy AB, Wei L, Jia W, Fantus IG, Sweet DH, Sweeney G, Retnakaran R, Dai FF, Wheeler MB (2014) The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab 19(4):653–666. doi: 10.1016/j.cmet.2014.03.008 CrossRefPubMedGoogle Scholar
  44. Pressler H, Sissung TM, Venzon D, Price DK, Figg WD (2011) Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One 6(5):e20372. doi: 10.1371/journal.pone.0020372 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC (2013) Beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 36(1):111–117. doi: 10.2337/dc12-0421 CrossRefPubMedGoogle Scholar
  46. Schmittgen TD, Lee EJ, Jiang J (2008) High-throughput real-time PCR. Methods Mol Biol 429:89–98. doi: 10.1007/978-1-60327-040-3_7 CrossRefPubMedGoogle Scholar
  47. Schwarz UI, Meyer zu Schwabedissen HE, Tirona RG, Suzuki A, Leake BF, Mokrab Y, Mizuguchi K, Ho RH, Kim RB (2011) Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet Genomics 21(3):103–114. doi: 10.1097/FPC.0b013e328342f5b1 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sreedharan S, Shaik JH, Olszewski PK, Levine AS, Schioth HB, Fredriksson R (2010) Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics 11:17. doi: 10.1186/1471-2164-11-17 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Thakkar N, Kim K, Jang ER, Han S, Kim D, Merchant N, Lockhart AC, Lee W (2013) A cancer-specific variant of the SLCO1B3 gene encodes a novel human organic anion transporting polypeptide 1B3 (OATP1B3) localized mainly in the cytoplasm of colon and pancreatic cancer cells. Mol Pharm 10(1):406–416. doi: 10.1021/mp3005353 CrossRefPubMedGoogle Scholar
  50. Tian J, Keller MP, Oler AT, Rabaglia ME, Schueler KL, Stapleton DS, Broman AT, Zhao W, Kendziorski C, Yandell BS, Hagenbuch B, Broman KW, Attie AD (2015) Identification of the bile acid transporter Slco1a6 as a candidate gene that broadly affects gene expression in mouse pancreatic islets. Genetics 201(3):1253–1262. doi: 10.1534/genetics.115.179432 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tiano J, Mauvais-Jarvis F (2012a) Selective estrogen receptor modulation in pancreatic beta-cells and the prevention of type 2 diabetes. Islets 4(2):173–176. doi: 10.4161/isl.19747 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tiano JP, Mauvais-Jarvis F (2012b) Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes. Nat Rev Endocrinol 8(6):342–351. doi: 10.1038/nrendo.2011.242 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michelle Kim
    • 1
  • Perri Deacon
    • 1
  • Rommel G. Tirona
    • 1
  • Richard B. Kim
    • 1
    • 2
    • 3
  • Christopher L. Pin
    • 1
    • 3
    • 4
  • Henriette E. Meyer zu Schwabedissen
    • 5
  • Rennian Wang
    • 1
    • 2
  • Ute I. Schwarz
    • 1
    • 2
    • 6
    Email author
  1. 1.Department of Physiology and PharmacologyUniversity of Western OntarioLondonCanada
  2. 2.Department of MedicineUniversity of Western OntarioLondonCanada
  3. 3.Department of OncologyUniversity of Western OntarioLondonCanada
  4. 4.Department of PaediatricsUniversity of Western OntarioLondonCanada
  5. 5.Biopharmacy, Department of Pharmaceutical ScienceUniversity BaselBaselSwitzerland
  6. 6.Division of Clinical Pharmacology, LHSC University HospitalUniversity of Western OntarioLondonCanada

Personalised recommendations