Histochemistry and Cell Biology

, Volume 147, Issue 6, pp 707–719 | Cite as

Localization and pneumococcal alteration of junction proteins in the human alveolar–capillary compartment

  • Andrea Peter
  • Diana Fatykhova
  • Olivia Kershaw
  • Achim D. Gruber
  • Jens Rueckert
  • Jens Neudecker
  • Mario Toennies
  • Torsten T. Bauer
  • Paul Schneider
  • Maria Schimek
  • Stephan Eggeling
  • Norbert Suttorp
  • Andreas C. Hocke
  • Stefan HippenstielEmail author
Original Paper


Loss of alveolar barrier function with subsequent respiratory failure is a hallmark of severe pneumonia. Although junctions between endo- and epithelial cells regulate paracellular fluid flux, little is known about their composition and regulation in the human alveolar compartment. High autofluorescence of human lung tissue in particular complicates the determination of subcellular protein localization. By comparing conventional channel mode confocal imaging with spectral imaging and linear unmixing, we demonstrate that background fluorescent spectra and fluorophore signals could be rigorously separated resulting in complete recovery of the specific signal at a high signal–to-noise ratio. Using this technique and Western blotting, we show the expression patterns of tight junction proteins occludin, ZO-1 as well as claudin-3, -4, -5 and -18 and adherence junction protein VE-cadherin in naive or Streptococcus pneumoniae-infected human lung tissue. In uninfected tissues, occludin and ZO-1 formed band-like structures in alveolar epithelial cells type I (AEC I), alveolar epithelial cells type II (AEC II) and lung capillaries, whereas claudin-3, -4 and -18 were visualised in AEC II. Claudin-5 was detected in the endothelium only. Claudin-3, -5, -18 displayed continuous band-like structures, while claudin-4 showed a dot-like expression. Pneumococcal infection reduced alveolar occludin, ZO-1, claudin-5 and VE-cadherin but did not change the presence of claudin-3, -4 and -18. Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue. The thereby observed deterioration of lung alveolar junctional organisation gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.


Tight junctions Streptococcus pneumoniae Pneumonia Occludin Claudin Spectral confocal microscopy 



Parts of this work are included in the doctoral thesis of Andrea Peter.

Compliance with ethical standards

Support statement

This study was supported by the Transregional Collaborative Research Center SFB-TR84 of the Deutsche Forschungsgemeinschaft (Grants B6 to A.C. Hocke and S. Hippenstiel, Z1a to A.C. Hocke as well as Z1b to A.D. Gruber and B1 to N. Suttorp) and the German Federal Ministry of Education and Research (Grant C1 to S. Hippenstiel and C8 to A.C. Hocke; PROGRESS—Pneumonia Research Network on Genetic Resistance and Susceptibility for the Evolution of Severe Sepsis).

Conflict of interest

The authors have no financial conflict of interest.

Supplementary material

418_2017_1551_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 KB)
418_2017_1551_MOESM2_ESM.tif (18.7 mb)
Supplementary material 2 (TIF 19197 KB)
418_2017_1551_MOESM3_ESM.tif (17 mb)
Supplementary material 3 (TIF 17412 KB)
418_2017_1551_MOESM4_ESM.tif (17.8 mb)
Supplementary material 4 (TIF 18199 KB)
418_2017_1551_MOESM5_ESM.tif (17.5 mb)
Supplementary material 5 (TIF 17951 KB)
418_2017_1551_MOESM6_ESM.tif (5.9 mb)
Supplementary material 6 (TIF 6010 KB)
418_2017_1551_MOESM7_ESM.tif (6 mb)
Supplementary material 7 (TIF 6097 KB)
418_2017_1551_MOESM8_ESM.tif (19.2 mb)
Supplementary material 8 (TIF 19627 KB)


  1. Bättig P, Muhlemann K (2008) Influence of the spxB gene on competence in Streptococcus pneumoniae. J Bacteriol 190:1184–1189CrossRefPubMedGoogle Scholar
  2. Bazzoni G (2006) Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 95:36–42PubMedGoogle Scholar
  3. Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS (2008) Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med 36:1803–1809CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen X, Goncalves MA (2016) Engineered viruses as genome editing devices. Mol Ther J Am Soc of Gene Ther 24:447–457CrossRefGoogle Scholar
  5. Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JG, Jacobson JR (2014) Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Respir Cell Mol Biol 50:328–336PubMedPubMedCentralGoogle Scholar
  6. Chu LY, Wang YF, Cheng HH, Kuo CC, Wu KK (2016) Endothelium-derived 5-methoxytryptophan protects endothelial barrier function by blocking p38 MAPK Activation. PloS One 11:e0152166CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB, Wary KK (2010) Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res 107:959–966CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Lisle RC (2014) Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell Tissue Res 355:131–142CrossRefPubMedGoogle Scholar
  9. Dietert K, Mundhenk L, Erickson NA, Reppe K, Hocke AC, Kummer W, Witzenrath M, Gruber AD (2015) Murine CLCA5 is uniquely expressed in distinct niches of airway epithelial cells. Histochem Cell Biol 143:277–287CrossRefPubMedGoogle Scholar
  10. Drijkoningen JJ, Rohde GG (2014) Pneumococcal infection in adults: burden of disease. Clin Microbiol Infect 20:45–51CrossRefPubMedGoogle Scholar
  11. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753CrossRefPubMedGoogle Scholar
  12. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626CrossRefPubMedGoogle Scholar
  13. Gonzalez JE, DiGeronimo RJ, Arthur DE, King JM (2009) Remodeling of the tight junction during recovery from exposure to hydrogen peroxide in kidney epithelial cells. Free Radic Biol Med 47:1561–1569CrossRefPubMedPubMedCentralGoogle Scholar
  14. Herold S, Gabrielli NM, Vadasz I (2013) Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 305:L665–L681CrossRefPubMedGoogle Scholar
  15. Hocke AC, Becher A, Knepper J, Peter A, Holland G, Tonnies M, Bauer TT, Schneider P, Neudecker J, Muth D, Wendtner CM, Ruckert JC, Drosten C, Gruber AD, Laue M, Suttorp N, Hippenstiel S, Wolff T (2013) Emerging human middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. Am J Respir Crit Care Med 188:882–886CrossRefPubMedGoogle Scholar
  16. Horie S, Masterson C, Devaney J, Laffey JG (2016) Stem cell therapy for acute respiratory distress syndrome: a promising future? Curr Opin Crit Care 22:14–20CrossRefPubMedGoogle Scholar
  17. Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z (2014) Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol 307:L524–L536CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kirk A, Campbell S, Bass P, Mason J, Collins J (2010) Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25:2107–2119CrossRefPubMedPubMedCentralGoogle Scholar
  19. Knepper J, Schierhorn KL, Becher A, Budt M, Tonnies M, Bauer TT, Schneider P, Neudecker J, Ruckert JC, Gruber AD, Suttorp N, Schweiger B, Hippenstiel S, Hocke AC, Wolff T (2013) The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue. MBio 4:e00601–00613CrossRefPubMedPubMedCentralGoogle Scholar
  20. Koda R, Zhao L, Yaoita E, Yoshida Y, Tsukita S, Tamura A, Nameta M, Zhang Y, Fujinaka H, Magdeldin S, Xu B, Narita I, Yamamoto T (2011) Novel expression of claudin-5 in glomerular podocytes. Cell Tissue Res 343:637–648CrossRefPubMedGoogle Scholar
  21. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493CrossRefPubMedGoogle Scholar
  22. Koppe U, Suttorp N, Opitz B (2012) Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol 14:460–466CrossRefPubMedGoogle Scholar
  23. Koval M (2013) Claudin heterogeneity and control of lung tight junctions. Annu Rev Physiol 75:551–567CrossRefPubMedGoogle Scholar
  24. Laakkonen JP, Lappalainen JP, Theelen TL, Toivanen PI, Nieminen T, Jauhiainen S, Kaikkonen MU, Sluimer JC, Yla-Herttuala S (2016) Differential regulation of angiogenic cellular processes and claudin-5 by histamine and VEGF via PI3K-signaling, transcription factor SNAI2 and interleukin-8. Angiogenesis 20:109–124CrossRefPubMedGoogle Scholar
  25. LaFemina MJ, Rokkam D, Chandrasena A, Pan J, Bajaj A, Johnson M, Frank JA (2010) Keratinocyte growth factor enhances barrier function without altering claudin expression in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 299:L724–L734CrossRefPubMedPubMedCentralGoogle Scholar
  26. LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, Rokkam D, Sweerus KA, Dobbs LG, Ballard PL, Frank JA (2014) Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol 51:550–558CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, Kim YH, Kim KJ, Laird-Offringa IA, Minoo P, Liebler JM, Zhou B, Crandall ED, Borok Z (2014a) Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol 51:210–222CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li H, Singh S, Potula R, Persidsky Y, Kanmogne GD (2014b) Dysregulation of claudin-5 in HIV-induced interstitial pneumonitis and lung vascular injury. Protective role of peroxisome proliferator-activated receptor-gamma. Am J Respir Crit Care Med 190:85–97CrossRefPubMedPubMedCentralGoogle Scholar
  29. Linares GR, Brommage R, Powell DR, Xing W, Chen ST, Alshbool FZ, Lau KH, Wergedal JE, Mohan S (2012) Claudin 18 is a novel negative regulator of bone resorption and osteoclast differentiation. J Bone mineral Res 27:1553–1565CrossRefGoogle Scholar
  30. Liu KM, Chuang SM, Long CY, Lee YL, Wang CC, Lu MC, Lin RJ, Lu JH, Jang MY, Wu WJ, Ho WT, Juan YS (2015a) Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol 309:F318-F331CrossRefGoogle Scholar
  31. Liu WJ, Zhong ZJ, Cao LH, Li HT, Zhang TH, Lin WQ (2015b) Paclitaxel-induced lung injury and its amelioration by parecoxib sodium. Sci Rep 5:12977CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580CrossRefPubMedGoogle Scholar
  33. Lu Z, Ding L, Lu Q, Chen YH (2013) Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 1:e24978CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lucas R, Verin AD, Black SM, Catravas JD (2009) Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem Pharmacol 77:1763–1772CrossRefPubMedPubMedCentralGoogle Scholar
  35. Matthay MA, Zemans RL (2011) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163CrossRefPubMedPubMedCentralGoogle Scholar
  36. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122:2731–2740CrossRefPubMedPubMedCentralGoogle Scholar
  37. Meyer TN, Schwesinger C, Ye J, Denker BM, Nigam SK (2001) Reassembly of the tight junction after oxidative stress depends on tyrosine kinase activity. J Biol Chem 276:22048–22055CrossRefPubMedGoogle Scholar
  38. Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798:2048–2057CrossRefPubMedGoogle Scholar
  39. Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194CrossRefPubMedPubMedCentralGoogle Scholar
  40. Moroi S, Saitou M, Fujimoto K, Sakakibara A, Furuse M, Yoshida O, Tsukita S (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am J Physiol 274:C1708–C1717PubMedGoogle Scholar
  41. Morrow CM, Mruk D, Cheng CY, Hess RA (2010) Claudin and occludin expression and function in the seminiferous epithelium. Philos Transa R Soci Lond Ser B Biol Sci 365:1679–1696CrossRefGoogle Scholar
  42. Mortality GBD, Causes of Death C (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544CrossRefGoogle Scholar
  43. Müller-Redetzky HC, Will D, Hellwig K, Kummer W, Tschernig T, Pfeil U, Paddenberg R, Menger MD, Kershaw O, Gruber AD, Weissmann N, Hippenstiel S, Suttorp N, Witzenrath M (2014) Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. Crit Care 18:R73CrossRefPubMedPubMedCentralGoogle Scholar
  44. Navone SE, Marfia G, Invernici G, Cristini S, Nava S, Balbi S, Sangiorgi S, Ciusani E, Bosutti A, Alessandri G, Slevin M, Parati EA (2013) Isolation and expansion of human and mouse brain microvascular endothelial cells. Nat Protoc 8:1680–1693CrossRefPubMedGoogle Scholar
  45. Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, Dexter DT (2015) Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson’s disease. Neurobiol Dis 74:392–405CrossRefPubMedGoogle Scholar
  46. Pletz MW, von Baum H, van der Linden M, Rohde G, Schutte H, Suttorp N, Welte T (2012) The burden of pneumococcal pneumonia—experience of the German competence network CAPNETZ. Pneumologie (Stuttgart, Germany) 66:470–475CrossRefGoogle Scholar
  47. Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ren H, Birch NP, Suresh V (2016) An optimised human cell culture model for alveolar epithelial transport. PloS One 11:e0165225CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rode K, Sieme H, Richterich P, Brehm R (2015) Characterization of the equine blood-testis barrier during tubular development in normal and cryptorchid stallions. Theriogenology 84:763–772CrossRefPubMedGoogle Scholar
  50. Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA (2011) Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol 179:1081–1087CrossRefPubMedPubMedCentralGoogle Scholar
  51. Soini Y, Takasawa A, Eskelinen M, Juvonen P, Karja V, Hasegawa T, Murata M, Tanaka S, Kojima T, Sawada N (2012) Expression of claudins 7 and 18 in pancreatic ductal adenocarcinoma: association with features of differentiation. J Clin Pathol 65:431–436CrossRefPubMedGoogle Scholar
  52. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C, Masure HR (1996) Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19:803–813CrossRefPubMedGoogle Scholar
  53. Spieth PM, Bluth T, Gama De Abreu M, Bacelis A, Goetz AE, Kiefmann R (2014) Mechanotransduction in the lungs. Minerva Anestesiol 80:933–941PubMedGoogle Scholar
  54. Stammler A, Luftner BU, Kliesch S, Weidner W, Bergmann M, Middendorff R, Konrad L (2016) Highly conserved testicular localization of claudin-11 in normal and impaired spermatogenesis. PloS One 11:e0160349CrossRefPubMedPubMedCentralGoogle Scholar
  55. Szymanski KV, Toennies M, Becher A, Fatykhova D, N’Guessan PD, Gutbier B, Klauschen F, Neuschaefer-Rube F, Schneider P, Rueckert J, Neudecker J, Bauer TT, Dalhoff K, Dromann D, Gruber AD, Kershaw O, Temmesfeld-Wollbrueck B, Suttorp N, Hippenstiel S, Hocke AC (2012) Streptococcus pneumoniae-induced regulation of cyclooxygenase-2 in human lung tissue. Eur Respir J 40:1458–1467CrossRefPubMedGoogle Scholar
  56. Tang EI, Mok KW, Lee WM, Cheng CY (2015) EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology 156:680–693CrossRefPubMedGoogle Scholar
  57. Todd MC, Petty HM, King JM, Piana Marshall BN, Sheller RA, Cuevas ME (2015) Overexpression and delocalization of claudin-3 protein in MCF-7 and MDA-MB-415 breast cancer cell lines. Oncol Lett 10:156–162PubMedPubMedCentralGoogle Scholar
  58. Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165CrossRefPubMedGoogle Scholar
  59. Walsh TG, Murphy RP, Fitzpatrick P, Rochfort KD, Guinan AF, Murphy A, Cummins PM (2011) Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 226:3053–3063CrossRefPubMedGoogle Scholar
  60. Weinheimer VK, Becher A, Tonnies M, Holland G, Knepper J, Bauer TT, Schneider P, Neudecker J, Ruckert JC, Szymanski K, Temmesfeld-Wollbrueck B, Gruber AD, Bannert N, Suttorp N, Hippenstiel S, Wolff T, Hocke AC (2012) Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis 206:1685–1694CrossRefPubMedGoogle Scholar
  61. Williams AE, Chambers RC (2014) The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 306:L217–L230CrossRefPubMedGoogle Scholar
  62. Witzenrath M, Gutbier B, Hocke AC, Schmeck B, Hippenstiel S, Berger K, Mitchell TJ, de los Toyos JR, Rosseau S, Suttorp N, Schutte H (2006) Role of pneumolysin for the development of acute lung injury in pneumococcal pneumonia. Crit Care Med 34:1947–1954CrossRefPubMedGoogle Scholar
  63. Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA (2009) Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol 297:L219–L227CrossRefPubMedPubMedCentralGoogle Scholar
  64. Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L (2012) HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 1436:13–19CrossRefPubMedGoogle Scholar
  65. You K, Xu X, Fu J, Xu S, Yue X, Yu Z, Xue X (2012) Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respir Res 13:36CrossRefPubMedPubMedCentralGoogle Scholar
  66. Yuksel H, Yilmaz O, Karaman M, Firinci F, Turkeli A, Kanik ET, Inan S (2015) Vascular endothelial growth factor antagonism restores epithelial barrier dysfunction via affecting zonula occludens proteins. Exp Ther Med 10:362–368PubMedPubMedCentralGoogle Scholar
  67. Zahlten J, Steinicke R, Bertrams W, Hocke AC, Scharf S, Schmeck B, Witzenrath M, Hammerschmidt S, Suttorp N, Hippenstiel S (2013) TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia. Eur Respir J 41:384–391CrossRefPubMedGoogle Scholar
  68. Zahlten J, Kim YJ, Doehn JM, Pribyl T, Hocke AC, Garcia P, Hammerschmidt S, Suttorp N, Hippenstiel S, Hubner RH (2014) Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 211:1822–1830CrossRefPubMedGoogle Scholar
  69. Zhou X, Dai Q, Huang X (2012) Neutrophils in acute lung injury. Front Biosci (Landmark ed) 17:2278–2283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Andrea Peter
    • 1
    • 2
  • Diana Fatykhova
    • 1
  • Olivia Kershaw
    • 3
  • Achim D. Gruber
    • 3
  • Jens Rueckert
    • 5
  • Jens Neudecker
    • 5
  • Mario Toennies
    • 4
  • Torsten T. Bauer
    • 4
  • Paul Schneider
    • 6
  • Maria Schimek
    • 7
  • Stephan Eggeling
    • 7
  • Norbert Suttorp
    • 1
  • Andreas C. Hocke
    • 1
  • Stefan Hippenstiel
    • 1
    • 8
    Email author
  1. 1.Department of Internal Medicine/Infectious Diseases and Pulmonary MedicineCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Department for Bioanalytics, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
  3. 3.Department of Veterinary PathologyFreie Universität BerlinBerlinGermany
  4. 4.Lungenklinik HeckeshornHELIOS Klinikum Emil von BehringBerlinGermany
  5. 5.Department of General, Visceral, Vascular and Thoracic SurgeryCharité-Universitätsmedizin BerlinBerlinGermany
  6. 6.Department for General and Thoracic SurgeryDRK ClinicsBerlinGermany
  7. 7.Vivantes Netzwerk für Gesundheit, Klinikum NeuköllnKlinik für Thoraxchirurgie, BerlinBerlinGermany
  8. 8.Department of Internal Medicine/Infectious Diseases and Pulmonary MedicineCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations