Advertisement

Histochemistry and Cell Biology

, Volume 148, Issue 1, pp 21–32 | Cite as

SMAD7 deficiency stimulates Müller progenitor cell proliferation during the development of the mammalian retina

  • Martina Kugler
  • Anja Schlecht
  • Rudolf Fuchshofer
  • Sabrina I. Schmitt
  • Ingo Kleiter
  • Ludwig Aigner
  • Ernst R. Tamm
  • Barbara M. Braunger
Original Paper

Abstract

The transforming growth factor-β (TGF-β) pathway contributes to maintain the quiescence of adult neural stem and progenitor cells in the brain. In the retina, Müller cells are discussed to represent a glial cell population with progenitor-like characteristics. Here, we aimed to investigate if elevated TGF-β signaling modulates the proliferation of Müller cells during retinal development. We generated mutant mice with a systemic, heterozygous up-regulation of TGF-β signaling by deleting its inhibitor SMAD7. We investigated apoptosis, proliferation, and differentiation of Müller cells in the developing retina. We show that a heterozygous deletion of SMAD7 results in an increased proliferation of Müller cell progenitors in the central retina at postnatal day 4, the time window when Müller cells differentiate in the mouse retina. This in turn results in a thickened retina and inner nuclear layer and a higher number of differentiated Müller cells in the more developed retina. Müller cells in mutant mice contain higher amounts of nestin than those of control animals which indicates that the increase in TGF-β signaling activity during retinal development contribute to maintain some progenitor-like characteristics in Müller cells even after their differentiation period. We conclude that TGF-β signaling influences Müller cell proliferation and differentiation during retinal development.

Keywords

SMAD7 TGF-β signaling Müller cells Progenitor cells Retina 

Notes

Acknowledgements

The authors would like to thank Elke Stauber, Angelika Pach, Margit Schimmel, and Silvia Babl for their excellent technical assistance. This work is supported by Deutsche Forschungsgemeinschaft Grant FOR 1075 (TP9).

References

  1. Arendt T, Brückner MK, Krell T et al (1995) Degeneration of rat cholinergic basal forebrain neurons and reactive changes in nerve growth factor expression after chronic neurotoxic injury–II. Reactive expression of the nerve growth factor gene in astrocytes. Neuroscience 65:647–659CrossRefPubMedGoogle Scholar
  2. Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27:7028–7040. doi: 10.1523/JNEUROSCI.1624-07.2007 CrossRefPubMedGoogle Scholar
  3. Boneva SK, Groß TR, Schlecht A et al (2016) Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye. Neuroscience 325:188–201. doi: 10.1016/j.neuroscience.2016.03.050 CrossRefPubMedGoogle Scholar
  4. Braisted JE, Essman TF, Raymond PA (1994) Selective regeneration of photoreceptors in goldfish retina. Development 120:2409–2419PubMedGoogle Scholar
  5. Braunger BM, Ohlmann A, Koch M et al (2013a) Constitutive overexpression of Norrin activates Wnt/β-catenin and endothelin-2 signaling to protect photoreceptors from light damage. Neurobiol Dis 50:1–12. doi: 10.1016/j.nbd.2012.09.008 CrossRefPubMedGoogle Scholar
  6. Braunger BM, Pielmeier S, Demmer C et al (2013b) TGF-β signaling protects retinal neurons from programmed cell death during the development of the mammalian eye. J Neurosci 33:14246–14258. doi: 10.1523/JNEUROSCI.0991-13.2013 CrossRefPubMedGoogle Scholar
  7. Braunger BM, Ademoglu B, Koschade SE et al (2014) Identification of adult stem cells in Schwalbe’s line region of the primate eye. Invest Ophthalmol Vis Sci 55:7499–7507. doi: 10.1167/iovs.14-14872 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braunger BM, Leimbeck SV, Schlecht A et al (2015) Deletion of ocular transforming growth factor β signaling mimics essential characteristics of diabetic retinopathy. Am J Pathol. doi: 10.1016/j.ajpath.2015.02.007 PubMedGoogle Scholar
  9. Bringmann A, Reichenbach A (2001) Role of Muller cells in retinal degenerations. Front Biosci J Virtual Libr 6:E72–E92CrossRefGoogle Scholar
  10. Cepko CL, Austin CP, Yang X et al (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93:589–595CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen Q, Chen H, Zheng D et al (2009) Smad7 is required for the development and function of the heart. J Biol Chem 284:292–300. doi: 10.1074/jbc.M807233200 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cotsarelis G, Cheng SZ, Dong G et al (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209CrossRefPubMedGoogle Scholar
  13. Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U (1992) Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci 103(Pt 2):589–597PubMedGoogle Scholar
  14. Dreyfus CF, Dai X, Lercher LD et al (1999) Expression of neurotrophins in the adult spinal cord in vivo. J Neurosci Res 56:1–7CrossRefPubMedGoogle Scholar
  15. Dyer MA, Cepko CL (2000) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873–880. doi: 10.1038/78774 CrossRefPubMedGoogle Scholar
  16. Ema H, Suda T (2012) Two anatomically distinct niches regulate stem cell activity. Blood 120:2174–2181. doi: 10.1182/blood-2012-04-424507 CrossRefPubMedGoogle Scholar
  17. Fiedorowicz A, Figiel I, Kamińska B et al (2001) Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure. Brain Res 912:116–127CrossRefPubMedGoogle Scholar
  18. Fischer AJ (2005) Neural regeneration in the chick retina. Prog Retin Eye Res 24:161–182. doi: 10.1016/j.preteyeres.2004.07.003 CrossRefPubMedGoogle Scholar
  19. Frade JM, Barde YA (1998) Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20:35–41CrossRefPubMedGoogle Scholar
  20. García M, Vecino E (2003) Role of Müller glia in neuroprotection and regeneration in the retina. Histol Histopathol 18:1205–1218PubMedGoogle Scholar
  21. Grosche A, Hauser A, Lepper MF, et al (2015) The proteome of native adult Muller glial cells from murine retina. Mol Cell Proteom. doi: 10.1074/mcp.M115.052183 Google Scholar
  22. Kandasamy M, Couillard-Despres S, Raber KA et al (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69:717–728. doi: 10.1097/NEN.0b013e3181e4f733 CrossRefPubMedGoogle Scholar
  23. Kandasamy M, Reilmann R, Winkler J, et al (2011) Transforming growth factor-beta signaling in the neural stem cell niche: a therapeutic target for Huntington’s disease. Neurol Res Int 2011:124256. doi: 10.1155/2011/124256 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Karl MO, Hayes S, Nelson BR, et al (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 105:19508–19513. doi: 10.1073/pnas.0807453105 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  26. Kleiter I, Song J, Lukas D et al (2010) Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain. J Neurol 133:1067–1081. doi: 10.1093/brain/awq039 Google Scholar
  27. Knott C, Stern G, Kingsbury A et al (2002) Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord 8:329–341CrossRefPubMedGoogle Scholar
  28. Krampert M, Chirasani SR, Wachs F-P et al (2010) Smad7 regulates the adult neural stem/progenitor cell pool in a transforming growth factor beta- and bone morphogenetic protein-independent manner. Mol Cell Biol 30:3685–3694. doi: 10.1128/MCB.00434-09 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kubota A, Nishida K, Nakashima K, Tano Y (2006) Conversion of mammalian Müller glial cells into a neuronal lineage by in vitro aggregate-culture. Biochem Biophys Res Commun 351:514–520. doi: 10.1016/j.bbrc.2006.10.072 CrossRefPubMedGoogle Scholar
  30. Kugler M, Schlecht A, Fuchshofer R et al (2015) Heterozygous modulation of TGF-β signaling does not influence Müller glia cell reactivity or proliferation following NMDA-induced damage. Histochem Cell Biol. doi: 10.1007/s00418-015-1354-y PubMedGoogle Scholar
  31. Lakso M, Pichel JG, Gorman JR et al (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci USA 93:5860–5865CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li R, Rosendahl A, Brodin G et al (2006) Deletion of exon I of SMAD7 in mice results in altered B cell responses. J Immunol 176:6777–6784CrossRefPubMedGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  34. Massagué J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641. doi: 10.1146/annurev.cb.06.110190.003121 CrossRefPubMedGoogle Scholar
  35. Morshead CM, Reynolds BA, Craig CG et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082CrossRefPubMedGoogle Scholar
  36. Ooto S, Akagi T, Kageyama R et al (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659. doi: 10.1073/pnas.0402129101 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36. doi: 10.1186/1471-213X-6-36 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefPubMedGoogle Scholar
  39. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323CrossRefPubMedGoogle Scholar
  40. Roth J, Taatjes DJ, Warhol MJ (1989) Prevention of non-specific interactions of gold-labeled reagents on tissue sections. Histochemistry 92:47–56CrossRefPubMedGoogle Scholar
  41. Schneider M, Fuchshofer R (2016) The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res 142:49–55. doi: 10.1016/j.exer.2015.08.014 CrossRefPubMedGoogle Scholar
  42. Seitz R, Hackl S, Seibuchner T et al (2010) Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells. J Neurosci 30:5998–6010. doi: 10.1523/JNEUROSCI.0730-10.2010 CrossRefPubMedGoogle Scholar
  43. Suzuki S, Namiki J, Shibata S et al (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58:721–730. doi: 10.1369/jhc.2010.955609 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tackenberg MA, Tucker BA, Swift JS et al (2009) Müller cell activation, proliferation and migration following laser injury. Mol Vis 15:1886–1896PubMedPubMedCentralGoogle Scholar
  45. Tovar-Vidales T, Wordinger RJ, Clark AF (2016) Identification and localization of lamina cribrosa cells in the human optic nerve head. Exp Eye Res 147:94–97. doi: 10.1016/j.exer.2016.05.006 CrossRefPubMedGoogle Scholar
  46. Vihtelic TS, Hyde DR (2000) Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J Neurobiol 44:289–307CrossRefPubMedGoogle Scholar
  47. Visser JA, Themmen AP. (1998) Downstream factors in transforming growth factor-β family signaling. Mol Cell Endocrinol 146:7–17. doi: 10.1016/S0303-7207(98)00198-1 CrossRefPubMedGoogle Scholar
  48. Voog J, Jones DL (2010) Stem cells and the niche: a dynamic Duo. Cell Stem Cell 6:103–115. doi: 10.1016/j.stem.2010.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wachs F-P, Winner B, Couillard-Despres S et al (2006) Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 65:358–370. doi: 10.1097/01.jnen.0000218444.53405.f0 CrossRefPubMedGoogle Scholar
  50. Walcott JC, Provis JM (2003) Müller cells express the neuronal progenitor cell marker nestin in both differentiated and undifferentiated human foetal retina. Clin Experiment Ophthalmol 31:246–249CrossRefPubMedGoogle Scholar
  51. Xue L, Ding P, Xiao L et al (2010) Nestin, a new marker, expressed in Müller cells following retinal injury. Can J Neurol Sci 37:643–649CrossRefPubMedGoogle Scholar
  52. Xue Y, Shen SQ, Jui J et al (2015) CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 125:727–738. doi: 10.1172/JCI79651 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Young RW (1984) Cell death during differentiation of the retina in the mouse. J Comp Neurol 229:362–373. doi: 10.1002/cne.902290307 CrossRefPubMedGoogle Scholar
  54. Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205. doi: 10.1002/ar.1092120215 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Martina Kugler
    • 1
  • Anja Schlecht
    • 1
  • Rudolf Fuchshofer
    • 1
  • Sabrina I. Schmitt
    • 1
  • Ingo Kleiter
    • 2
  • Ludwig Aigner
    • 3
  • Ernst R. Tamm
    • 1
  • Barbara M. Braunger
    • 1
  1. 1.Institute of Human Anatomy and EmbryologyUniversity of RegensburgRegensburgGermany
  2. 2.Department of NeurologySt. Josef-HospitalBochumGermany
  3. 3.Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center SalzburgParacelsus Medical UniversitySalzburgAustria

Personalised recommendations