Histochemistry and Cell Biology

, Volume 147, Issue 6, pp 733–748 | Cite as

Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages

  • Israel HanukogluEmail author
  • Vijay R. Boggula
  • Hananya Vaknine
  • Sachin Sharma
  • Thomas Kleyman
  • Aaron Hanukoglu
Original Paper


A major function of the skin is the regulation of body temperature by sweat secretions. Sweat glands secrete water and salt, especially NaCl. Excreted water evaporates, cooling the skin surface, and Na+ ions are reabsorbed by the epithelial sodium channels (ENaC). Mutations in ENaC subunit genes lead to a severe multi-system (systemic) form of pseudohypoaldosteronism (PHA) type I, characterized by salt loss from aldosterone target organs, including sweat glands in the skin. In this study, we mapped the sites of localization of ENaC in the human skin by confocal microscopy using polyclonal antibodies generated against human αENaC. Our results reveal that ENaC is expressed strongly in all epidermal layers except stratum corneum, and also in the sebaceous glands, eccrine glands, arrector pili smooth muscle cells, and intra-dermal adipocytes. In smooth muscle cells and adipocytes, ENaC is co-localized with F-actin. No expression of ENaC was detected in the dermis. CFTR is strongly expressed in sebaceous glands. In epidermal appendages noted, except the eccrine sweat glands, ENaC is mainly located in the cytoplasm. In the eccrine glands and ducts, ENaC and CFTR are located on the apical side of the membrane. This localization of ENaC is compatible with ENaC’s role in salt reabsorption. PHA patients may develop folliculitis, miliaria rubra, and atopic dermatitis-like skin lesions, due to sweat gland duct occlusion and inflammation of eccrine glands as a result of salt accumulation.


Actin Eccrine gland Epidermis Keratinocytes Pseudohypoaldosteronism Renin–angiotensin–aldosterone system Smooth muscle cells Sweat glands 



Cystic fibrosis


Cystic fibrosis transmembrane conductance regulator


Epithelial sodium channel


Extracellular fluid




Plasma renin activity





We are grateful to Prof. Yardena Tenenbaum-Rakover for referring a patient to us. This research was funded in part by a grant from the United States-Israel Binational Science Foundation (BSF).


  1. Aberer E, Gebhart W, Mainitz M et al (1987) Sweat glands in pseudohypoaldosteronism. Der Hautarzt; Zeitschrift für Dermatologie, Venerol und verwandte Gebiete 38:484–7Google Scholar
  2. Arnoldi R, Hiltbrunner A, Dugina V et al (2013) Smooth muscle actin isoforms: a tug of war between contraction and compliance. Eur J Cell Biol 92:187–200. doi: 10.1016/j.ejcb.2013.06.002 CrossRefPubMedGoogle Scholar
  3. Brouard M, Casado M, Djelidi S et al (1999) Epithelial sodium channel in human epidermal keratinocytes: expression of its subunits and relation to sodium transport and differentiation. J Cell Sci 112:3343–3352PubMedGoogle Scholar
  4. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6:328–340. doi: 10.1038/nrm1619 CrossRefPubMedGoogle Scholar
  5. Canessa CM, Merillat AM, Rossier BC (1994) Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol 267:C1682–C1690PubMedGoogle Scholar
  6. Chang SS, Grunder S, Hanukoglu A et al (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12:248–253. doi: 10.1038/ng0396-248 CrossRefPubMedGoogle Scholar
  7. Chen J, Kleyman TR, Sheng S (2014) Deletion of α-subunit exon 11 of the epithelial Na+ channel reveals a regulatory module. Am J Physiol Renal Physiol 306:F561-F567. doi: 10.1152/ajprenal.00587.2013 PubMedCentralGoogle Scholar
  8. Collins KJ, Foster KG, Hubbard JL (1970) Effect of aldosterone on mammalian eccrine sweat glands. Experientia 26:1313–1314CrossRefPubMedGoogle Scholar
  9. Cui C-YY, Schlessinger D (2015) Eccrine sweat gland development and sweat secretion. Exp Dermatol 24:644–650. doi: 10.1111/exd.12773 CrossRefPubMedGoogle Scholar
  10. Driskell RR, Jahoda CAB, Chuong C-M et al (2014) Defining dermal adipose tissue. Exp Dermatol 23:629–631. doi: 10.1111/exd.12450 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Duc C, Farman N, Canessa CM et al (1994) Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol 127:1907–1921CrossRefPubMedGoogle Scholar
  12. Eckert RL, Adhikary G, Balasubramanian S et al (2013) Biochemistry of epidermal stem cells. Biochim Biophys Acta 1830:2427–2434. doi: 10.1016/j.bbagen.2012.07.002 CrossRefPubMedGoogle Scholar
  13. Edelheit O, Hanukoglu I, Gizewska M et al (2005) Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism. Clin Endocrinol (Oxf) 62:547–553. doi: 10.1111/j.1365-2265.2005.02255.x CrossRefGoogle Scholar
  14. Enuka Y, Hanukoglu I, Edelheit O et al (2012) Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 137:339–353. doi: 10.1007/s00418-011-0904-1 CrossRefPubMedGoogle Scholar
  15. Farman N, Maubec E, Poeggeler B et al (2010) The mineralocorticoid receptor as a novel player in skin biology: beyond the renal horizon? Exp Dermatol 19:100–107. doi: 10.1111/j.1600-0625.2009.01011.x CrossRefPubMedGoogle Scholar
  16. Frateschi S, Charles R-P, Hummler E (2010) The epithelial sodium channel ENaC and its regulators in the epidermal permeability barrier function. Open Dermatol J 4:27–35Google Scholar
  17. Fuchs E, Nowak JA (2008) Building epithelial tissues from skin stem cells. Cold Spring Harb Symp Quant Biol 73:333–350. doi: 10.1101/sqb.2008.73.032 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giraldez T, Rojas P, Jou J, et al (2012) The epithelial sodium channel δ-subunit: new notes for an old song. Am J Physiol Renal Physiol 303:F328-F338. doi: 10.1152/ajprenal.00116.2012 CrossRefGoogle Scholar
  19. Hanukoglu A (1991) Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab 73:936–944. doi: 10.1210/jcem-73-5-936 CrossRefPubMedGoogle Scholar
  20. Hanukoglu I (2017) ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters. FEBS J. doi: 10.1111/febs.13840 PubMedGoogle Scholar
  21. Hanukoglu I, Hanukoglu A (2016) Epithelial sodium channel (ENaC) family: phylogeny, structure–function, tissue distribution, and associated inherited diseases. Gene 579:95–132. doi: 10.1016/j.gene.2015.12.061 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanukoglu I, Tanese N, Fuchs E (1983) Complementary DNA sequence of a human cytoplasmic actin. Interspecies divergence of 3′ non-coding regions. J Mol Biol 163:673–678. doi: 10.1016/0022-2836(83)90117-1 CrossRefPubMedGoogle Scholar
  23. Hanukoglu A, Bistritzer T, Rakover Y, Mandelberg A (1994) Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cystic fibrosis. J Pediatr 125:752–755. doi: 10.1016/S0022-3476(06)80176-9 CrossRefPubMedGoogle Scholar
  24. Hanukoglu A, Edelheit O, Shriki Y et al (2008) Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes. J Steroid Biochem Mol Biol 111:268–274. doi: 10.1016/j.jsbmb.2008.06.013 CrossRefPubMedGoogle Scholar
  25. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41:349–369. doi: 10.1016/j.biocel.2008.09.027 CrossRefPubMedGoogle Scholar
  26. Kanzaki M, Pessin JE (2001) Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 276:42436–42444. doi: 10.1074/jbc.M108297200 CrossRefPubMedGoogle Scholar
  27. Kenouch S, Lombes M, Delahaye F et al (1994) Human skin as target for aldosterone: coexpression of mineralocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 79:1334–1341. doi: 10.1210/jcem.79.5.7962326 PubMedGoogle Scholar
  28. Kerem E, Bistritzer T, Hanukoglu A et al (1999) Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 341:156–162. doi: 10.1056/NEJM199907153410304 CrossRefPubMedGoogle Scholar
  29. Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284:20447–20451CrossRefPubMedPubMedCentralGoogle Scholar
  30. Korkut S, Gökalp E, Özdemir A et al (2015) Dermal and ophthalmic findings in pseudohypoaldosteronism. J Clin Res Pediatr Endocrinol 7:155–158. doi: 10.4274/jcrpe.1740 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kruglikov IL, Scherer PE, Spalding KL et al (2016) Dermal adipocytes: from irrelevance to metabolic targets? Trends Endocrinol Metab 27:1–10. doi: 10.1016/j.tem.2015.11.002 CrossRefPubMedGoogle Scholar
  32. Lehman W, Morgan KG (2012) Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil 33:461–469. doi: 10.1007/s10974-012-9283-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li H, Zhang X, Zeng S et al (2014) The cellular localization of Na(+)/H(+) exchanger 1, cystic fibrosis transmembrane conductance regulator, potassium channel, epithelial sodium channel γ and vacuolar-type H+ -ATPase in human eccrine sweat glands. Acta Histochem 116:1237–1243. doi: 10.1016/j.acthis.2014.07.005 CrossRefPubMedGoogle Scholar
  34. Martín JM, Calduch L, Monteagudo C et al (2005) Clinico-pathological analysis of the cutaneous lesions of a patient with type I pseudohypoaldosteronism. J Eur Acad Dermatol Venereol 19:377–379. doi: 10.1111/j.1468-3083.2004.01173.x CrossRefPubMedGoogle Scholar
  35. Martinez-Santibañez G, Cho KW, Lumeng CN (2014) Imaging white adipose tissue with confocal microscopy. In: Methods enzymol. pp 17–30Google Scholar
  36. Mauro T, Guitard M, Behne M et al (2002) The ENaC channel is required for normal epidermal differentiation. J Invest Dermatol 118:589–594. doi: 10.1046/j.1523-1747.2002.01721.x CrossRefPubMedGoogle Scholar
  37. Mori S, Kiuchi S, Ouchi A et al (2014) Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. Int J Biol Sci 10:825–833. doi: 10.7150/ijbs.8672 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Oda Y, Imanzahrai A, Kwong A et al (1999) Epithelial sodium channels are upregulated during epidermal differentiation. J Invest Dermatol 113:796–801. doi: 10.1046/j.1523-1747.1999.00742.x CrossRefPubMedGoogle Scholar
  39. Reddy MM, Light MJ, Quinton PM (1999) Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl channel function. Nature 402:301–304. doi: 10.1038/46297 CrossRefPubMedGoogle Scholar
  40. Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361–379CrossRefPubMedGoogle Scholar
  41. Rossier BC, Baker ME, Studer RA (2015) Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 95:297–340. doi: 10.1152/physrev.00011.2014 CrossRefPubMedGoogle Scholar
  42. Roudier-Pujol C, Rochat A, Escoubet B et al (1996) Differential expression of epithelial sodium channel subunit mRNAs in rat skin. J Cell Sci 109:379–385PubMedGoogle Scholar
  43. Samuelov L, Sprecher E, Paus R (2015) The role of P-cadherin in skin biology and skin pathology: lessons from the hair follicle. Cell Tissue Res 360:761–771. doi: 10.1007/s00441-015-2114-y CrossRefPubMedGoogle Scholar
  44. Sasaki S, Yui N, Noda Y (2014) Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model. Biochim Biophys Acta 1838:514–520. doi: 10.1016/j.bbamem.2013.06.004 CrossRefPubMedGoogle Scholar
  45. Sato K, Kang WH, Saga K, Sato KT (1989) Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 20:537–563. doi: 10.1016/S0190-9622(89)70063-3 CrossRefPubMedGoogle Scholar
  46. Schneider MR, Schmidt-Ullrich R, Paus R et al (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19:R132–R142. doi: 10.1016/j.cub.2008.12.005 CrossRefPubMedGoogle Scholar
  47. Shibasaki M, Crandall CG (2010) Mechanisms and controllers of eccrine sweating in humans. Front Biosci (Schol Ed) 2:685–696Google Scholar
  48. Smith KR, Thiboutot DM (2008) Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res 49:271–281. doi: 10.1194/jlr.R700015-JLR200 CrossRefPubMedGoogle Scholar
  49. Snyder PM, McDonald FJ, Stokes JB, Welsh MJ (1994) Membrane topology of the amiloride-sensitive epithelial sodium channel. J Biol Chem 269:24379–24383PubMedGoogle Scholar
  50. Strautnieks SS, Thompson RJ, Hanukoglu A et al (1996) Localisation of pseudohypoaldosteronism genes to chromosome 16p12.2–13.11 and 12p13.1-pter by homozygosity mapping. Hum Mol Genet 5:293–299. doi: 10.1093/hmg/5.2.293 CrossRefPubMedGoogle Scholar
  51. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410. doi: 10.1038/nrm3802 CrossRefPubMedGoogle Scholar
  52. Torkamani N, Rufaut NW, Jones L, Sinclair RD (2014) Beyond goosebumps: does the arrector pili muscle have a role in hair loss? Int J Trichol 6:88–94. doi: 10.4103/0974-7753.139077 CrossRefGoogle Scholar
  53. Urbatsch A, Paller AS (2002) Pustular miliaria rubra: A specific cutaneous finding of type I pseudohypoaldosteronism. Pediatr Dermatol 19:317–319. doi: 10.1046/j.1525-1470.2002.00090.x CrossRefPubMedGoogle Scholar
  54. Waldmann R, Champigny G, Bassilana F et al (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem 270:27411–27414CrossRefPubMedGoogle Scholar
  55. Waters JM, Richardson GD, Jahoda CAB (2007) Hair follicle stem cells. Semin Cell Dev Biol 18:245–254. doi: 10.1016/j.semcdb.2007.02.003 CrossRefPubMedGoogle Scholar
  56. Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 205:194–208. doi: 10.1111/j.1748-1716.2012.02409.x CrossRefGoogle Scholar
  57. Xu W, Hong SJ, Zeitchek M et al (2015a) Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin. J Invest Dermatol 135:796–806. doi: 10.1038/jid.2014.477
  58. Xu W, Hong SJ, Zhong A et al (2015b) Sodium channel Nax is a regulator in epithelial sodium homeostasis. Sci Transl Med 7:312ra177. doi: 10.1126/scitranslmed.aad0286
  59. Yamamura H, Ugawa S, Ueda T et al (2008a) Epithelial Na+ channel delta subunit mediates acid-induced ATP release in the human skin. Biochem Biophys Res Commun 373:155–158. doi: 10.1016/j.bbrc.2008.06.008
  60. Yamamura H, Ugawa S, Ueda T, Shimada S (2008b) Expression analysis of the epithelial Na+ channel delta subunit in human melanoma G-361 cells. Biochem Biophys Res Commun 366:489–492. doi: 10.1016/j.bbrc.2007.11.177
  61. Yang H-Y, Charles R-P, Hummler E et al (2013) The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes. J Cell Sci 126:1942–1951. doi: 10.1242/jcs.113225 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Cell BiologyAriel UniversityArielIsrael
  2. 2.Sackler Faculty of MedicineTel-Aviv UniversityTel AvivIsrael
  3. 3.Division of PathologyE. Wolfson Medical CenterHolonIsrael
  4. 4.Department of MedicineUniversity of PittsburghPittsburghUSA
  5. 5.Department of Cell BiologyUniversity of PittsburghPittsburghUSA
  6. 6.Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghUSA
  7. 7.Division of Pediatric EndocrinologyE. Wolfson Medical CenterHolonIsrael

Personalised recommendations