Advertisement

Histochemistry and Cell Biology

, Volume 147, Issue 4, pp 439–451 | Cite as

Functional characterisation of the YIPF protein family in mammalian cells

  • Tilen Kranjc
  • Eugene Dempsey
  • Gerard Cagney
  • Nobuhiro Nakamura
  • Denis C. Shields
  • Jeremy C. Simpson
Original Paper

Abstract

In this study, we carry out a systematic characterisation of the YIPF family of proteins with respect to their subcellular localisation profile, membrane topology and functional effects on the endomembrane system. YIPF proteins primarily localise to the Golgi complex and can be grouped into trans-Golgi-localising YIPFs (YIPF1 and YIPF2) and cis-Golgi-localising YIPFs (YIPF3, YIPF4 and YIPF5), with YIPF6 and YIPF7 showing a broader profile being distributed throughout the Golgi stack. YIPF proteins have a long soluble N-terminal region, which is orientated towards the cytosol, followed by 5 closely stacked transmembrane domains, and a C terminus, orientated towards the lumen of the Golgi. The significance of YIPF proteins for the maintenance of the morphology of the Golgi was tested by RNA interference, revealing a number of specific morphological changes to this organelle on their depletion. We propose a role for this family of proteins in regulating membrane dynamics in the endomembrane system.

Keywords

YIPF Transmembrane proteins Subcellular localisation Membrane traffic Golgi apparatus 

Notes

Acknowledgements

This work was partly funded by The Irish Research Council (IRC), the UCD Bioinformatics and Systems Biology PhD programme, and a Principal Investigator (PI) Grant (09/IN.1/B2604) from Science Foundation Ireland (SFI) to JCS. This work was carried out in the UCD Cell Screening Laboratory, supported by a grant from the UCD College of Science. The authors thank Maeve Long, George Galea and Mariana G. Bexiga for valuable feedback and discussion.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

418_2016_1527_MOESM1_ESM.tif (22.3 mb)
Supplementary material 1 (TIFF 22806 kb)
418_2016_1527_MOESM2_ESM.docx (426 kb)
Supplementary material 2 (DOCX 426 kb)

References

  1. Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289:444–448CrossRefPubMedGoogle Scholar
  2. Barbero P, Bittova L, Pfeffer SR (2002) Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 156:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bard F, Casano L, Mallabiabarrena A et al (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:604–607CrossRefPubMedGoogle Scholar
  4. Barone V, Mazzoli E, Kunic J et al (2015) Yip1B isoform is localized at ER–Golgi intermediate and cis-Golgi compartments and is not required for maintenance of the Golgi structure in skeletal muscle. Histochem Cell Biol 143:235–243CrossRefPubMedGoogle Scholar
  5. Barrowman J, Wang W, Zhang Y, Ferro-Novick S (2003) The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J Biol Chem 278:19878–19884CrossRefPubMedGoogle Scholar
  6. Behnia R, Munro S (2005) Organelle identity and the signposts for membrane traffic. Nature 438:597–604CrossRefPubMedGoogle Scholar
  7. Bexiga MG, Simpson JC (2013) Human diseases associated with form and function of the Golgi complex. Int J Mol Sci 14:18670–18681CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhuin T, Roy JK (2014) Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 328:1–19CrossRefPubMedGoogle Scholar
  9. Calero M, Winand NJ, Collins RN (2002) Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett 515:89–98CrossRefPubMedGoogle Scholar
  10. Carpenter AE, Jones TR, Lamprecht MR et al (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  12. Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doms RW, Russ G, Yewdell JW (1989) Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J Cell Biol 109:61–72CrossRefPubMedGoogle Scholar
  14. Dykstra KM, Pokusa JE, Suhan J, Lee TH (2010) Yip1A structures the mammalian endoplasmic reticulum. Mol Biol Cell 21:1556–1568CrossRefPubMedPubMedCentralGoogle Scholar
  15. Füllekrug J, Sönnichsen B, Schäfer U et al (1997) Characterization of brefeldin A induced vesicular structures containing cycling proteins of the intermediate compartment/cis-Golgi network. FEBS Lett 404:75–81CrossRefPubMedGoogle Scholar
  16. Galea G, Bexiga MG, Panarella A et al (2015) A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J Cell Sci 128:2339–2349CrossRefPubMedGoogle Scholar
  17. Heidtman M, Chen CZ, Collins RN, Barlowe C (2003) A role for Yip1p in COPII vesicle biogenesis. J Cell Biol 163:57–69CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kano F, Yamauchi S, Yoshida Y et al (2009) Yip1A regulates the COPI-independent retrograde transport from the Golgi complex to the ER. J Cell Sci 122:2218–2227CrossRefPubMedGoogle Scholar
  19. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813CrossRefPubMedGoogle Scholar
  20. Lippincott-Schwartz J, Donaldson JG, Schweizer A et al (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60:821–836CrossRefPubMedGoogle Scholar
  21. Lorenz H, Hailey DW, Wunder C, Lippincott-Schwartz J (2006) The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat Protoc 1:276–279CrossRefPubMedGoogle Scholar
  22. Maxfield FR (2014) Role of endosomes and lysosomes in human disease. Cold Spring Harb Perspect Biol 6:a016931CrossRefPubMedPubMedCentralGoogle Scholar
  23. Misumi Y, Misumi Y, Miki K et al (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261:11398–11403PubMedGoogle Scholar
  24. Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  25. Poser I, Sarov M, Hutchins JRA et al (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5:409–415CrossRefPubMedPubMedCentralGoogle Scholar
  26. R Development Core Team (2008) R: a language and environment for statistical computingGoogle Scholar
  27. Roussel BD, Kruppa AJ, Miranda E et al (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12:105–118CrossRefPubMedGoogle Scholar
  28. Saraste J, Lahtinen U, Goud B (1995) Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway. J Cell Sci 108(Pt 4):1541–1552PubMedGoogle Scholar
  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  30. Schröder K, Martoglio B, Hofmann M et al (1999) Control of glycosylation of MHC class II-associated invariant chain by translocon-associated RAMP4. EMBO J 18:4804–4815CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shakoori A, Fujii G, Yoshimura S-I et al (2003) Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem Biophys Res Commun 312:850–857CrossRefPubMedGoogle Scholar
  32. Simpson JC (2009) Screening the secretion machinery: high throughput imaging approaches to elucidate the secretory pathway. Semin Cell Dev Biol 20:903–909CrossRefPubMedGoogle Scholar
  33. Simpson JC, Joggerst B, Laketa V et al (2012) Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nat Cell Biol 14:764–774CrossRefPubMedGoogle Scholar
  34. Singan VR, Jones TR, Curran KM, Simpson JC (2011) Dual channel rank-based intensity weighting for quantitative co-localization of microscopy images. BMC Bioinform 12:407CrossRefGoogle Scholar
  35. Tang BL, Ong YS, Huang B et al (2001) A membrane protein enriched in endoplasmic reticulum exit sites interacts with COPII. J Biol Chem 276:40008–40017CrossRefPubMedGoogle Scholar
  36. Tanimoto K, Suzuki K, Jokitalo E et al (2011) Characterization of YIPF3 and YIPF4, cis-Golgi Localizing Yip domain family proteins. Cell Struct Funct 36:171–185CrossRefPubMedGoogle Scholar
  37. Thyberg J, Moskalewski S (1985) Microtubules and the organization of the Golgi complex. Exp Cell Res 159:1–16CrossRefPubMedGoogle Scholar
  38. Tisdale EJ, Bourne JR, Khosravi-Far R et al (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119:749–761CrossRefPubMedGoogle Scholar
  39. Wendler F, Gillingham AK, Sinka R et al (2010) A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO J 29:304–314CrossRefPubMedGoogle Scholar
  40. Yang X, Matern HT, Gallwitz D (1998) Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p. EMBO J 17:4954–4963CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yoshida Y, Suzuki K, Yamamoto A et al (2008) YIPF5 and YIF1A recycle between the ER and the Golgi apparatus and are involved in the maintenance of the Golgi structure. Exp Cell Res 314:3427–3443CrossRefPubMedGoogle Scholar
  42. Yoshimura S-I, Gerondopoulos A, Linford A et al (2010) Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J Cell Biol 191:367–381CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zahraoui A, Touchot N, Chardin P, Tavitian A (1989) The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem 264:12394–12401PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
  2. 2.UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublin 4Ireland
  3. 3.School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
  4. 4.Department of Molecular Biosciences, Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
  5. 5.School of Medicine and Medical ScienceUniversity College DublinDublin 4Ireland
  6. 6.Department of Clinical Biochemistry, Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations