Histochemistry and Cell Biology

, Volume 147, Issue 2, pp 269–284 | Cite as

Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9

  • Jürgen Roth
  • Christian Zuber


Protein N-glycosylation and quality control of protein folding as well as the connected ER-associated degradation of misfolded glycoproteins (ERAD) are not only evolutionary highly conserved but also functionally linked. It is now established that particular N-glycan structures which result from processing reactions by exo-glycosidases in the ER are of importance for glycoprotein folding and for ERAD. Thus, mono-glucosylated N-glycan intermediates harbor structural information which is important for promoting glycoprotein folding. On the other hand, specific mannose-trimmed N-glycans harbor structural information for routing misfolded glycoproteins to ERAD. In this review, we summarize current knowledge concerning the role played by glucosidases I and II, in concert with the bifunctional glucosyltransferase and calnexin/calreticulin in glycoprotein folding, the role of conventional ER mannosidase I in concert with the mannosidase EDEM1 in handling and routing of misfolded glycoproteins, and how the bifunctional OS-9 provides a link to the ER dislocon for degradation.


Protein N-glycosylation Endoplasmic reticulum Glucosidase I Glucosidase II Glucosyltransferase ER mannosidase I EDEM1 OS-9 Protein folding ERAD 



We thank D. J. Taatjes for comments on the manuscript, and we apologize to those colleagues whose publications could not be included in this review due to space limitations. Our original work was supported by the Swiss National Science Foundation.


  1. Alonso JM, Santa C-A, Calvo P (1991) Glucosidase II from rat liver microsomes. Kinetic model for binding and hydrolysis. Biochem J 278:721–727PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465PubMedGoogle Scholar
  3. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science. doi: 10.1126/science.aac4354 PubMedGoogle Scholar
  4. Banerjee S, Vishwanath P, Cui J, Kelleher DJ, Gilmore R, Robbins PW, Samuelson J (2007) The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci USA 104:11676–11681PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bause E, Schweden J, Gross A, Orthen B (1989) Purification and characterization of trimming glucosidase I from pig liver. Eur J Biochem 183:661–669PubMedCrossRefGoogle Scholar
  6. Bhamidipati A, Denic V, Quan EM, Weissman JS (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19:741–751PubMedCrossRefGoogle Scholar
  7. Bhide GP, Colley KJ (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 147(2). doi: 10.1007/s00418-016-1520-x
  8. Bischoff J, Kornfeld R (1983) Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver. J Biol Chem 258:7907–7910PubMedGoogle Scholar
  9. Bischoff J, Liscum L, Kornfeld R (1986) The use of 1-deoxymannojirimycin to evaluate the role of various alpha-mannosidases in oligosaccharide processing in intact cells. J Biol Chem 261:4766–4774PubMedGoogle Scholar
  10. Bonifacino JS, Weissman AM (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 14:19–57PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brada D, Dubach UC (1984) Isolation of a homogeneous glucosidase II from pig kidney microsomes. Eur J Biochem 141:149–156PubMedCrossRefGoogle Scholar
  12. Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426:239–257PubMedCrossRefGoogle Scholar
  13. Burns DM, Touster O (1982) Purification and characterization of glucosidase II, an endoplasmic reticulum hydrolase involved in glycoprotein biosynthesis. J Biol Chem 257:9990–10000PubMedGoogle Scholar
  14. Buschhorn BA, Kostova Z, Medicherla B, Wolf DH (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577:422–426PubMedCrossRefGoogle Scholar
  15. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373PubMedCrossRefGoogle Scholar
  16. Chavan M, Lennarz W (2006) The molecular basis of coupling of translocation and N-glycosylation. Trends Biochem Sci 31:17–20PubMedCrossRefGoogle Scholar
  17. Christianson JC, Shaler TA, Tyler RE, Kopito RR (2008) OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1/SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160PubMedPubMedCentralCrossRefGoogle Scholar
  19. Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  20. Corfield A (2017) Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi: 10.1007/s00418-016-1526-4
  21. Cormier JH, Tamura T, Sunryd JC, Hebert DN (2009) EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 34:627–633PubMedPubMedCentralCrossRefGoogle Scholar
  22. D’Alessio C, Fernandez F, Trombetta ES, Parodi AJ (1999) Genetic evidence for the heterodimeric structure of glucosidase II—the effect of disrupting the subunit-encoding genes on glycoprotein folding. J Biol Chem 274:25899–25905PubMedCrossRefGoogle Scholar
  23. David V, Hochstenbach F, Rajagopalan S, Brenner MB (1993) Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J Biol Chem 268:9585–9592PubMedGoogle Scholar
  24. de Virgilio C, Burckert N, Neuhaus JM, Boller T, Wiemken A (1993) CNE1, a Saccharomyces cerevisiae homologue of the genes encoding mammalian calnexin and calreticulin. Yeast 9:185–188PubMedCrossRefGoogle Scholar
  25. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359PubMedCrossRefGoogle Scholar
  26. Eisele F, Schafer A, Wolf DH (2010) Ubiquitylation in the ERAD pathway. Subcell Biochem 54:136–148PubMedCrossRefGoogle Scholar
  27. Ellgaard L, Riek R, Herrmann T, Guntert P, Braun D, Helenius A, Wuthrich K (2001) NMR structure of the calreticulin P-domain. Proc Nat Acad Sci USA 98:3133–3138PubMedPubMedCentralCrossRefGoogle Scholar
  28. Elting JJ, Chen WW, Lennarz WJ (1980) Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J Biol Chem 255:2325–2331PubMedGoogle Scholar
  29. Ermonval M, Kitzmuller C, Mir AM, Cacan R, Ivessa NE (2001) N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology 11:565–576PubMedCrossRefGoogle Scholar
  30. Fernandez FS, Trombetta SE, Hellman U, Parodi AJ (1994) Purification to homogeneity of UDP-glucose:glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme fro Saccharomyces cerevisiae. J Biol Chem 269:30701–30706PubMedGoogle Scholar
  31. Fernandez F, Jannatipour M, Hellman U, Rokeach LA, Parodi AJ (1996) A new stress protein: synthesis of schizosaccharomyces pombe UDP-Glc:glycoprotein glucosyltransferase mRNA is induced by stress conditions but the enzyme is not essential for cell viability. EMBO J 15:705–713PubMedPubMedCentralGoogle Scholar
  32. Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M (1989) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264:21522–21528PubMedGoogle Scholar
  33. Flura T, Brada D, Ziak M, Roth J (1997) Expression of a cDNA encoding the glucose trimming enzyme glucosidase II in CHO cells and molecular characterization of the enzyme deficiency in a mutant mouse lymphoma cell line. Glycobiology 7:617–624PubMedCrossRefGoogle Scholar
  34. Foulquier F, HarduinLepers A, Duvet S, Marchal I, Mir AM, Delannoy P, Chirat F, Cacan R (2002) The unfolded protein response in a dolichyl phosphate mannose-deficient Chinese hamster ovary cell line points out the key role of a demannosylation step in the quality-control mechanism of N-glycoproteins. Biochem J 362:491–498PubMedPubMedCentralCrossRefGoogle Scholar
  35. Frenkel Z, Gregory W, Kornfeld S, Lederkremer GZ (2003) Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6–5GlcNAc2. J Biol Chem 278:34119–34124PubMedCrossRefGoogle Scholar
  36. Fujimori T, Kamiya Y, Nagata K, Kato K, Hosokawa N (2013) Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded α1-antitrypsin variant. FEBS J 280:1563–1575PubMedCrossRefGoogle Scholar
  37. Gauss R, Jarosch E, Sommer T, Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849–854PubMedCrossRefGoogle Scholar
  38. Gauss R, Kanehara K, Carvalho P, Ng DTW, Aebi M (2011) A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42:782–793PubMedCrossRefGoogle Scholar
  39. Gonzalez DS, Karaveg K, VandersallNairn AS, Lal A, Moremen KW (1999) Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274:21375–21386PubMedCrossRefGoogle Scholar
  40. Grinna LS, Robbins PW (1979) Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J Biol Chem 254:8814–8818PubMedGoogle Scholar
  41. Guerin M, Parodi AJ (2003) The UDP-glucose:glycoprotein glucosyltransferase is organized in at least two tightly bound domains from yeast to mammals. J Biol Chem 278:20540–20546PubMedCrossRefGoogle Scholar
  42. Hagiwara M, Maegawa K, Suzuki M, Ushioda R, Araki K, Matsumoto Y, Hoseki J, Nagata K, Inaba K (2011) Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 41:432–444PubMedCrossRefGoogle Scholar
  43. Hagiwara M, Ling J, Koenig P-A, Ploegh Hidde L (2016) Posttranscriptional regulation of glycoprotein quality control in the endoplasmic reticulum is controlled by the E2 Ub-conjugating enzyme UBC6e. Mol Cell 63:753–767PubMedCrossRefGoogle Scholar
  44. Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91:913–917PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433PubMedCrossRefGoogle Scholar
  46. Hebert DN, Zhang JX, Chen W, Foellmer B, Helenius A (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139:613–623PubMedPubMedCentralCrossRefGoogle Scholar
  47. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049PubMedCrossRefGoogle Scholar
  48. Hentges A, Bause E (1997) Affinity purification and characterization of glucosidase II from pig liver. Biol Chem 378:1031–1038PubMedCrossRefGoogle Scholar
  49. Herscovics A (1999a) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107PubMedCrossRefGoogle Scholar
  50. Herscovics A (1999b) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:275–285PubMedCrossRefGoogle Scholar
  51. Hettkamp H, Legler G, Bause E (1984) Purification by affinity chromatography of glucosidase I, an endoplasmic reticulum hydrolase involved in the processing of asparagine-linked oligosaccharides. Eur J Biochem 142:85–90PubMedCrossRefGoogle Scholar
  52. Hiller MM, Finger A, Schweiger M, Wolf DH (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:1725–1728PubMedCrossRefGoogle Scholar
  53. Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A, Nagata K, Hosokawa N (2006) EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. J Biol Chem 281:9650–9658PubMedCrossRefGoogle Scholar
  54. Hochstenbach F, David V, Watkins S, Brenner MB (1992) Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci USA 89:4734–4738PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong α1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294PubMedCrossRefGoogle Scholar
  57. Hosokawa N, Wada I, Nagasawa K, Moriyama T, Okawa K, Nagata K (2008) Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L Ubiquitin ligase complex and BiP. J Biol Chem 283:20914–20924PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K (2009) Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem 284:17061–17068PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hosokawa N, Kamiya Y, Kato K (2010a) The role of MRH domain-containing lectins in ERAD. Glycobiology 20:651–660PubMedCrossRefGoogle Scholar
  60. Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A (2010b) EDEM1 accelerates the trimming of α1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–575PubMedCrossRefGoogle Scholar
  61. Hu D, Kamiya Y, Totani K, Kamiya D, Kawasaki N, Yamaguchi D, Matsuo I, Matsumoto N, Ito Y, Kato K, Yamamoto K (2009) Sugar-binding activity of the MRH domain in the ER α-glucosidase II β subunit is important for efficient glucose trimming. Glycobiology 19:1127–1135PubMedCrossRefGoogle Scholar
  62. Hubbard SC, Robbins PW (1979) Synthesis and processing of protein-linked oligosaccharides in vivo. J Biol Chem 254:4568–4576PubMedGoogle Scholar
  63. Hutt DM, Balch WE (2013) Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol 5:a013383PubMedPubMedCentralCrossRefGoogle Scholar
  64. Iida Y, Fujimori T, Okawa K, Nagata K, Wada I, Hosokawa N (2011) SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J Biol Chem 286:16929–16939PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jakob CA, Burda P, Roth J, Aebi M (1998a) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jakob CA, Burda P, te Heesen S, Aebi M, Roth J (1998b) Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8:155–164PubMedCrossRefGoogle Scholar
  67. Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:423–430PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jelinek-Kelly S, Akiyama T, Saunier B, Tkacz JS, Herscovics A (1985) Characterization of a specific alpha-mannosidase involved in oligosaccharide processing in Saccharomyces cerevisiae. J Biol Chem 260:2253–2257PubMedGoogle Scholar
  69. Kalz-Fuller B, Bieberich E, Bause E (1995) Cloning and expression of glucosidase I from human hippocampus. Eur J Biochem 231:344–351PubMedCrossRefGoogle Scholar
  70. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, Moremen KW (2005) Mechanism of class 1 (glycosylhydrolase family 47) α-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280:16197–16207PubMedCrossRefGoogle Scholar
  71. Kim W, Spear ED, Ng DT (2005) Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol Cell 19:753–764PubMedCrossRefGoogle Scholar
  72. Kim I, Ahn J, Liu C, Tanabe K, Apodaca J, Suzuki T, Rao H (2006) The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol 172:211–219PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kimura Y, Nakazawa M, Yamada M (1998) Cloning and characterization of three isoforms of OS-9 cDNA and expression of the OS-9 gene in various human tumor cell lines. J Biochem 123:876–882PubMedCrossRefGoogle Scholar
  74. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  75. Kornfeld S, Li E, Tabas I (1978) The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem 253:7771–7778PubMedGoogle Scholar
  76. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, Gehring K (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620PubMedPubMedCentralCrossRefGoogle Scholar
  77. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464PubMedPubMedCentralCrossRefGoogle Scholar
  78. Labriola C, Cazullo JJ, Parodi AJ (1995) Retention of glucose units added by the UDP-Glc: glycoprotein glucosyltransferase delays exit of glycoproteins from the endoplasmic reticulum. J Cell Biol 130:771–779PubMedCrossRefGoogle Scholar
  79. Le Fourn V, Gaplovska-Kysela K, Guhl B, Santimaria R, Zuber C, Roth J (2009) Basal autophagy is involved in the degradation of the ERAD component EDEM1. Cell Mol Life Sci 66:1434–1445PubMedCrossRefGoogle Scholar
  80. Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 277:29686–29697PubMedCrossRefGoogle Scholar
  81. Li E, Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem 253:7762–7770PubMedGoogle Scholar
  82. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840PubMedCrossRefGoogle Scholar
  83. Lilley BN, Ploegh HL (2005) Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 102:14296–14301PubMedPubMedCentralCrossRefGoogle Scholar
  84. Liu Y, Choudhury P, Cabral CM, Sifers RN (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem 274:5861–5867PubMedCrossRefGoogle Scholar
  85. Lobsanov YD, Vallee F, Imberty A, Yoshida T, Yip P, Herscovics A, Howell PL (2002) Structure of Penicillium citrinum α1,2-mannosidase reveals the basis for differences in specificity of the endoplasmic reticulum and golgi class I enzymes. J Biol Chem 277:5620–5630PubMedCrossRefGoogle Scholar
  86. Lucocq JM, Brada D, Roth J (1986) Immunolocalization of the oligosaccharide trimming enzyme glucosidase II. J Cell Biol 102:2137–2146PubMedCrossRefGoogle Scholar
  87. Martiniuk F, Ellenbogen A, Hirschhorn R (1985) Identity of neutral alpha-glucosidase AB and the glycoprotein processing enzyme glucosidase II. Biochemical and genetic studies. J Biol Chem 260:1238–1242PubMedGoogle Scholar
  88. Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15:421–436PubMedCrossRefGoogle Scholar
  89. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772PubMedCrossRefGoogle Scholar
  90. Michael JM, Kornfeld S (1980) Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch Biochem Biophys 199:249–258PubMedCrossRefGoogle Scholar
  91. Mikami K, Yamaguchi D, Tateno H, Hu D, Qin SY, Kawasaki N, Yamada M, Matsumoto N, Hirabayashi J, Ito Y, Yamamoto K (2010) The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation. Glycobiology 20:310–321PubMedCrossRefGoogle Scholar
  92. Molinari M, Helenius A (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288:331–333PubMedCrossRefGoogle Scholar
  93. Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400PubMedCrossRefGoogle Scholar
  94. Moremen KW, Trimble RB, Herscovics A (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4:113–125PubMedCrossRefGoogle Scholar
  95. Mueller B, Lilley BN, Ploegh HL (2006) SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175:261–270PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL (2008) SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci USA 105:12325–12330PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nakatsukasa K, Nishikawa S, Hosokawa N, Nagata K, Endo T (2001) Mnl1p, an α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276:8635–8638PubMedCrossRefGoogle Scholar
  98. Ninagawa S, Okada T, Takeda S, Mori K (2011) SEL1L is required for endoplasmic reticulum-associated degradation of misfolded luminal proteins but not transmembrane proteins in chicken DT40 cell line. Cell Struct Funct 36:187–195PubMedCrossRefGoogle Scholar
  99. Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206:347–356PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394–1397PubMedCrossRefGoogle Scholar
  101. Olivari S, Galli C, Alanen H, Ruddock L, Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280:2424–2428PubMedCrossRefGoogle Scholar
  102. Olivari S, Cali T, Salo KE, Paganetti P, Ruddock LW, Molinari M (2006) EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochem Biophys Res Commun 349:1278–1284PubMedCrossRefGoogle Scholar
  103. Ou WJ, Cameron PH, Thomas DY, Bergeron JJM (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364:771–776PubMedCrossRefGoogle Scholar
  104. Park S, Jang I, Zuber C, Lee Y, Cho JW, Matsuo I, Ito Y, Roth J (2014) ERADication of EDEM1 occurs by selective autophagy and requires deglycosylation by cytoplasmic peptide N-glycanase. Histochem Cell Biol 142:153–169PubMedCrossRefGoogle Scholar
  105. Parker CG, Fessler LI, Nelson RE, Fessler JH (1995) Drosophila UDP-glucose:glycoprotein glucosyltransferase: sequence and characterization of an enzyme that distinguishes between denatured and native proteins. EMBO J 14:1294–1303PubMedPubMedCentralGoogle Scholar
  106. Parlati F, Dominguez M, Bergeron JJ, Thomas DY (1995) Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem 270:244–253PubMedCrossRefGoogle Scholar
  107. Parodi AJ, Leloir LF (1979) The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta 559:1–37PubMedCrossRefGoogle Scholar
  108. Parodi AJ, Behrens NH, Leloir LF, Carminatti H (1972) The role of polyprenol-bound saccharides as intermediates in glycoprotein synthesis in liver. Proc Natl Acad Sci USA 69:3268–3272PubMedPubMedCentralCrossRefGoogle Scholar
  109. Parodi AJ, Mendelzon DH, Lederkremer GZ (1983) Transient glucosylation of protein-bound Man9GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2 in calf thyroid cells. A possible recognition signal in the processing of glycoproteins. J Biol Chem 258:8260–8265PubMedGoogle Scholar
  110. Parodi AJ, Mendelzon DH, Lederkremer GZ, Martin-Barrientos J (1984) Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2, and Man7GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells. J Biol Chem 259:6351–6357PubMedGoogle Scholar
  111. Pavelka M, Roth J (2015) Functional ultrastructure. Atlas of tissue biology and pathology, 3rd edn. Springer, ViennaGoogle Scholar
  112. Pelletier MF, Marcil A, Sevigny G, Jakob CA, Tessier DC, Chevet E, Menard R, Bergeron JJ, Thomas DY (2000) The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10:815–827PubMedCrossRefGoogle Scholar
  113. Peterson JR, Ora A, Van PN, Helenius A (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6:1173–1184PubMedPubMedCentralCrossRefGoogle Scholar
  114. Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rajagopalan S, Xu YH, Brenner MB (1994) Retention of unassembled components of integral membrane proteins by calnexin. Science 263:387–390PubMedCrossRefGoogle Scholar
  116. Rizzolo LJ, Kornfeld R (1988) Post-translational protein modification in the endoplasmic reticulum. Demonstration of fatty acylase and deoxymannojirimycin-sensitive alpha-mannosidase activities. J Biol Chem 263:9520–9525PubMedGoogle Scholar
  117. Robbins PW (1999) Yeast glycosylation–foundations and building blocks. Biochim Biophys Acta 1426:225–226PubMedCrossRefGoogle Scholar
  118. Robbins PW, Hubbard SC, Turco SJ, Wirth DF (1977) Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell 12:893–900PubMedCrossRefGoogle Scholar
  119. Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102:285–303PubMedCrossRefGoogle Scholar
  120. Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506PubMedCrossRefGoogle Scholar
  121. Sakoh-Nakatogawa M, Nishikawa S, Endo T (2009) Roles of protein-disulfide isomerase-mediated disulfide bond formation of yeast Mnl1p in endoplasmic reticulum-associated degradation. J Biol Chem 284:11815–11825PubMedPubMedCentralCrossRefGoogle Scholar
  122. Samuelson J, Robbins PW (2015) Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation. Semin Cell Dev Biol 41:121–128PubMedCrossRefGoogle Scholar
  123. Satoh T, Chen Y, Hu D, Hanashima S, Yamamoto K, Yamaguchi Y (2010) Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol Cell 40:905–916PubMedCrossRefGoogle Scholar
  124. Saunier B, Kilker RJ, Tkacz JS, Quaroni A, Herscovics A (1982) Inhibition of N-linked complex oligosaccharide formation by 1-deoxynojirimycin, an inhibitor of processing glucosidases. J Biol Chem 257:14155–14161PubMedGoogle Scholar
  125. Schrag JD, Bergeron JJM, Li YG, Borisova S, Hahn M, Thomas DY, Cygler M (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8:633–644PubMedCrossRefGoogle Scholar
  126. Schweden J, Borgmann C, Legler G, Bause E (1986) Characterization of calf liver glucosidase I and its inhibition by basic sugar analogs. Arch Biochem Biophys 248:335–340PubMedCrossRefGoogle Scholar
  127. Shrimal S, Cherepanova NA, Gilmore R (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78PubMedCrossRefGoogle Scholar
  128. Sifers RN, Brashears-Macatee S, Kidd VJ, Muensch H, Woo SL (1988) A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem 263:7330–7335PubMedGoogle Scholar
  129. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090PubMedCrossRefGoogle Scholar
  130. Sousa MC, Ferrero-Garcia MA, Parodi AJ (1992) Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 31:97–105PubMedCrossRefGoogle Scholar
  131. Spiro MJ, Spiro RG, Bhoyroo VD (1976a) Lipid-saccharide intermediates in glycoprotein biosynthesis. I. Formation of an oligosaccharide-lipid by thyroid slices and evaluation of its role in protein glycosylation. J Biol Chem 251:6400–6408PubMedGoogle Scholar
  132. Spiro RG, Spiro MJ, Bhoyroo VD (1976b) Lipid-saccharide intermediates in glycoprotein biosynthesis. II. Studies on the structure of an oligosaccharide-lipid from thyroid. J Biol Chem 251:6409–6419PubMedGoogle Scholar
  133. Spiro RG, Zhu Q, Bhoyroo V, Söling HD (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271:11588–11594PubMedCrossRefGoogle Scholar
  134. Stigliano ID, Caramelo JJ, Labriola CA, Parodi AJ, D’Alessio C (2009) Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol Biol Cell 20:3974–3984PubMedPubMedCentralCrossRefGoogle Scholar
  135. Strous GJ, Van Kerkhof P, Brok R, Roth J, Brada D (1987) Glucosidase II, a protein of the endoplasmic reticulum with high mannose oligosaccharide chains and a rapid turnover. J Biol Chem 262:3620–3625PubMedGoogle Scholar
  136. Su YA, Hutter CM, Trent JM, Meltzer PS (1996) Complete sequence analysis of a gene (OS-9) ubiquitously expressed in human tissues and amplified in sarcomas. Mol Carcinog 15:270–275PubMedCrossRefGoogle Scholar
  137. Suh K, Bergmann JE, Gabel CA (1989) Selective retention of monoglucosylated high mannose oligosaccharides by a class of mutant vesicular stomatitis virus G proteins. J Cell Biol 108:811–819PubMedCrossRefGoogle Scholar
  138. Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ (2000) PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J Cell Biol 149:1039–1052PubMedPubMedCentralCrossRefGoogle Scholar
  139. Suzuki T, Park H, Lennarz WJ (2002) Cytoplasmic peptide: N-glycanase (PNGase) in eukaryotic cells: occurrence, primary structure, and potential functions. FASEB J 16:635–641PubMedCrossRefGoogle Scholar
  140. Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19:765–775PubMedCrossRefGoogle Scholar
  141. Tessier DC, Dignard D, Zapun A, RadominskaPandya A, Parodi J, Bergeron JJM, Thomas DY (2000) Cloning and characterization of mammalian UDP-glucose glycoprotein: glucosyltransferase and the development of a specific substrate for this enzyme. Glycobiology 10:403–412PubMedCrossRefGoogle Scholar
  142. Tremblay LO, Herscovics A (1999) Cloning and expression of a specific human α1,2-mannosidase that trims Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomer B during N-glycan biosynthesis. Glycobiology 9:1073–1078PubMedCrossRefGoogle Scholar
  143. Treml K, Meimaroglou D, Hentges A, Bause E (2000) The α- and β-subunits are required for expression of catalytic activity in the hetero-dimeric glucosidase II complex from human liver. Glycobiology 10:493–502PubMedCrossRefGoogle Scholar
  144. Trombetta SE, Bosch M, Parodi AJ (1989) Glucosylation of glycoproteins by mammalian, plant, fungal, and trypanosomatid protozoa microsomal membranes. Biochemistry 28:8108–8116PubMedCrossRefGoogle Scholar
  145. Trombetta SE, Ganan SA, Parodi AJ (1991) The UDP-Glc: glycoprotein glucosyltransferase is a soluble protein of the endoplasmic reticulum. Glycobiology 1:155–165CrossRefGoogle Scholar
  146. Trombetta ES, Simons JF, Helenius A (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 271:27509–27516PubMedCrossRefGoogle Scholar
  147. Ugalde RA, Staneloni RJ, Leloir LF (1980) Microsomal glucosidases of rat liver. Partial purification and inhibition by disaccharides. Eur J Biochem 113:97–103PubMedCrossRefGoogle Scholar
  148. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572PubMedCrossRefGoogle Scholar
  149. Vallée F, Lipari F, Yip P, Sleno B, Herscovics A, Howell PL (2000) Crystal structure of a class I α1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. EMBO J 19:581–588PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vassilakos A, Michalak M, Lehrman MA, Williams DB (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37:3480–3490PubMedCrossRefGoogle Scholar
  151. Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ 2nd, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266:19599–19610PubMedGoogle Scholar
  153. Waechter CJ, Lennarz WJ (1976) The role of polyprenol-linked sugars in glycoprotein synthesis. Annu Rev Biochem 45:95–112PubMedCrossRefGoogle Scholar
  154. Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270:4697–4704PubMedCrossRefGoogle Scholar
  155. Weng S, Spiro RG (1996) Endoplasmic reticulum kifunensine-resistant α-mannosidase is enzymatically and immunologically related to the cytosolic alpha-mannosidase. Arch Biochem Biophys 325:113–123PubMedCrossRefGoogle Scholar
  156. Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119:615PubMedCrossRefGoogle Scholar
  157. Wolf DH, Fink GR (1975) Proteinase C (carboxypeptidase Y) mutant of yeast. J Bacteriol 123:1150–1156PubMedPubMedCentralGoogle Scholar
  158. Wolf DH, Schafer A (2005) CPY* and the power of yeast genetics in the elucidation of quality control and associated protein degradation of the endoplasmic reticulum. Curr Top Microbiol Immunol 300:41–56PubMedGoogle Scholar
  159. Xu X, Kanbara K, Azakami H, Kato A (2004) Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue. J Biochem 135:615–618PubMedCrossRefGoogle Scholar
  160. Yamaguchi D, Hu D, Matsumoto N, Yamamoto K (2010) Human XTP3-B binds to α1-antitrypsin variant null (Hong Kong) via the C-terminal MRH domain in a glycan-dependent manner. Glycobiology 20:348–355PubMedCrossRefGoogle Scholar
  161. Yang M, Omura S, Bonifacino JS, Weissman AM (1998) Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J Exp Med 187:835–846PubMedPubMedCentralCrossRefGoogle Scholar
  162. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847PubMedCrossRefGoogle Scholar
  163. Ziak M, Meier M, Etter KS, Roth J (2001) Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells. Biochem Biophys Res Commun 280:363–367PubMedCrossRefGoogle Scholar
  164. Zuber C, Roth J (2009) N-Glycosylation. In: Gabius H (ed) The sugar code. Wiley-VCH, Weinheim, pp 87–110Google Scholar
  165. Zuber C, Fan JY, Guhl B, Parodi A, Fessler JH, Parker C, Roth J (2001) Immunolocalization of UDP-glucose:glycoprotein glucosyltransferase indicates involvement of pre-Golgi intermediates in protein quality control. Proc Natl Acad Sci USA 98:10710–10715PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zuber C, Cormier JH, Guhl B, Santimaria R, Hebert DN, Roth J (2007) EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proc Natl Acad Sci USA 104:4407–4412PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Cell and Molecular PathologyUniversity of ZurichZurichSwitzerland

Personalised recommendations