Histochemistry and Cell Biology

, Volume 146, Issue 6, pp 781–806 | Cite as

Deep tissue imaging: a review from a preclinical cancer research perspective

  • Annette Feuchtinger
  • Axel WalchEmail author
  • Michael Dobosz


This review delves into the rapidly evolving field of deep tissue imaging at cellular resolution, reviewing popular tissue clearing and staining methods in combination with light-sheet fluorescence microscopy (LSFM) including quantification and three-dimensional visualization tools, the field of applications and perspective, particularly with the focus on preclinical cancer research and drug development. The LSFM technique presented here allows an extremely fast optical sectioning for three-dimensional reconstruction of centimeter-sized tissue samples at cellular resolution. However, optical clearing methods are required to receive optical transparent tissue. Application of either tissue autofluorescence, in vivo fluorescence labeling, endogenous fluorescence or ex vivo whole-mount immunolabeling enables three-dimensional in situ visualization of morphological and functional features of unsectioned whole-mount tissue samples. This powerful and innovative imaging technique opens up a new dimension of tissue analysis providing detailed and comprehensive insights into biology. It enables the investigation of normal and pathological tissue features and disease progression and allows precise monitoring of potential therapeutic interventions in intact biological tissue on a cellular level.


3D tissue imaging Light-sheet fluorescence microscopy Tissue clearing Preclinical cancer research Virtual 3D fluorescence histology 



The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (SFB 824 TP Z02). The authors AF and AW would like to thank Ulrike Buchholz, Claudia-Mareike Pflüger and Andreas Voss for excellent technical assistance. The author MD would like to thank Hadassah Sade, Thomas Pöschinger and Frank Herting for helpful discussion and constant support and the Roche Postdoc Fellowship Program for financing this work.

Compliance with ethical standards

Conflict of interest

The authors AF and AW declare no conflict of interest. The author MD is an employee of Roche Diagnostics GmbH.

Supplementary material

Video 1

Morphology of a mouse lung (cleared according to 3DISCO) based on autofluorescence signals visualized by arivis Vision4D (AVI 140067 kb)

418_2016_1495_MOESM2_ESM.mp4 (25.4 mb)
Video 2 2D visualization of virtual tissue slices obtained from different fluorescence channels. First channel: Tumor morphology (autofluorescence, gray). Second channel: Tumor vasculature (Lectin-Alexa647, green). Third channel: Antibody penetration (Trastuzumab-Alexa750, red) (MP4 26017 kb)


  1. Alnuami AA, Zeedi B, Qadri SM, Ashraf SS (2008) Oxyradical-induced GFP damage and loss of fluorescence. Int J Biol Macromol 43(2):182–186CrossRefPubMedGoogle Scholar
  2. Becker K, Jährling N, Kramer ER, Schnorrer F, Dodt HU (2008) Ultramicroscopy: 3D reconstruction of large microscopical specimens. J Biophotonics 1(1):36–42CrossRefPubMedGoogle Scholar
  3. Becker K, Jährling N, Saghafi S, Weiler R, Dodt HU (2012) Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 7(3):e33916CrossRefPubMedPubMedCentralGoogle Scholar
  4. Becker K, Jährling N, Saghafi S, Dodt HU (2013) Ultramicroscopy: light-sheet-based microscopy for imaging centimeter-sized objects with micrometer resolution. Cold Spring Harb Protoc 8:704–713Google Scholar
  5. Belle M, Godefroy D, Dominici C, Heitz-Marchaland C, Zelina P, Hellal F, Bradke F, Chedotal A (2014) A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep 9(4):1191–1201CrossRefPubMedGoogle Scholar
  6. Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40(6):852–857CrossRefPubMedGoogle Scholar
  7. Breckwoldt MO, Bode J, Kurz FT, Hoffmann A, Ochs K, Ott M, Deumelandt K, Kruwel T, Schwarz D, Fischer M, Helluy X, Milford D, Kirschbaum K, Solecki G, Chiblak S, Abdollahi A, Winkler F, Wick W, Platten M, Heiland S, Bendszus M, Tews B (2016) Correlated magnetic resonance imaging and ultramicroscopy (MR-UM) is a tool kit to assess the dynamics of glioma angiogenesis. Elife 5:e11712CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10(6):508–513CrossRefPubMedGoogle Scholar
  9. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332–337CrossRefPubMedPubMedCentralGoogle Scholar
  10. Costantini I, Ghobril JP, Di Giovanna AP, Allegra Mascaro AL, Silvestri L, Mullenbroich MC, Onofri L, Conti V, Vanzi F, Sacconi L, Guerrini R, Markram H, Iannello G, Pavone FS (2015) A versatile clearing agent for multi-modal brain imaging. Sci Rep 5:9808CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dobosz M, Ntziachristos V, Scheuer W, Strobel S (2014) Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16(1):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Deussing JM, Eder M, Zieglgansberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331–336CrossRefPubMedGoogle Scholar
  13. Epp JR, Niibori Y, Liz Hsiang HL, Mercaldo V, Deisseroth K, Josselyn SA, Frankland PW (2015) Optimization of CLARITY for clearing whole-brain and other intact organs(1,2,3). eNeuro. doi: 10.1523/ENEURO.0022-15.2015
  14. Ertürk A, Bradke F (2013) High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol 242:57–64CrossRefPubMedGoogle Scholar
  15. Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, Hellal F, Bradke F, Sheng M, Dodt HU (2012a) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7(11):1983–1995CrossRefPubMedGoogle Scholar
  16. Ertürk A, Mauch CP, Hellal F, Forstner F, Keck T, Becker K, Jährling N, Steffens H, Richter M, Hubener M, Kramer E, Kirchhoff F, Dodt HU, Bradke F (2012b) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 18(1):166–171CrossRefGoogle Scholar
  17. Ertürk A, Lafkas D, Chalouni C (2014) Imaging cleared intact biological systems at a cellular level by 3DISCO. J Vis Exp. doi: 10.3791/51382
  18. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):645–658CrossRefPubMedGoogle Scholar
  19. Fuchs E, Jaffe JS, Long RA, Azam F (2002) Thin laser light sheet microscope for microbial oceanography. Opt Express 10(2):145–154CrossRefPubMedGoogle Scholar
  20. Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, Alitalo K, Andresen V, Schulte-Merker S, Kiefer F (2013) A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J 32(5):629–644CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, Miyawaki A (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488CrossRefPubMedGoogle Scholar
  22. Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H, Ishidate F, Kaneko T, Akagi T, Saito T, Saido T, Miyawaki A (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18(10):1518CrossRefPubMedGoogle Scholar
  23. Harma V, Virtanen J, Makela R, Happonen A, Mpindi JP, Knuuttila M, Kohonen P, Lotjonen J, Kallioniemi O, Nees M (2010) A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 5(5):e10431CrossRefPubMedPubMedCentralGoogle Scholar
  24. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16(12):574–583CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5(10):796–806CrossRefPubMedGoogle Scholar
  26. Hoffman RM (2015) Application of GFP imaging in cancer. Lab Invest 95(4):432–452CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoos A (2016) Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15(4):235–247CrossRefPubMedGoogle Scholar
  28. Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C (2013) Three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7(3):205–209CrossRefPubMedCentralGoogle Scholar
  29. Hou B, Zhang D, Zhao S, Wei M, Yang Z, Wang S, Wang J, Zhang X, Liu B, Fan L, Li Y, Qiu Z, Zhang C, Jiang T (2015) Scalable and DiI-compatible optical clearance of the mammalian brain. Front Neuroanat 9:19CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huisken J, Stainier DY (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136(12):1963–1975CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009CrossRefPubMedGoogle Scholar
  32. Jährling N, Becker K, Dodt HU (2009) 3D-reconstruction of blood vessels by ultramicroscopy. Organogenesis 5(4):227–230CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jobsis FF (1977) Non-invasive, infra-red monitoring of cerebral O2 sufficiency, bloodvolume, HbO2-Hb shifts and bloodflow. Acta Neurol Scand Suppl 64:452–453PubMedGoogle Scholar
  34. Ke MT, Imai T (2014) Optical clearing of fixed brain samples using SeeDB. Curr Protoc Neurosci 66:2–22Google Scholar
  35. Ke MT, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16(8):1154–1161CrossRefPubMedGoogle Scholar
  36. Ke MT, Nakai Y, Fujimoto S, Takayama R, Yoshida S, Kitajima TS, Sato M, Imai T (2016) Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep 14(11):2718–2732CrossRefPubMedGoogle Scholar
  37. Kim SY, Chung K, Deisseroth K (2013) Light microscopy mapping of connections in the intact brain. Trends Cogn Sci 17(12):596–599CrossRefPubMedGoogle Scholar
  38. Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44(2):83–90CrossRefPubMedGoogle Scholar
  39. Kolesova H, Capek M, Radochova B, Janacek J, Sedmera D (2016) Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem Cell Biol 146(2):141–152CrossRefPubMedGoogle Scholar
  40. Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C (2013) ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140(6):1364–1368CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lee S, Xie J, Chen X (2010) Activatable molecular probes for cancer imaging. Curr Top Med Chem 10(11):1135–1144CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, Kim SY, Lee HJ, Cho K, Jung N, Hur EM, Jeong SJ, Moon C, Choe Y, Rhyu IJ, Kim H, Sun W (2016) ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep 6:18631CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leischner U, Zieglgansberger W, Dodt HU (2009) Resolution of ultramicroscopy and field of view analysis. PLoS One 4(6):e5785CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leischner U, Schierloh A, Zieglgansberger W, Dodt HU (2010) Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples. PLoS One 5(4):e10391CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mendler CT, Feuchtinger A, Heid I, Aichler M, D’Alessandria C, Pirsig S, Blechert B, Wester HJ, Braren R, Walch A, Skerra A, Schwaiger M (2016) Tumor uptake of anti-CD20 fabs depends on tumor perfusion. J Nucl Med [Epub ahead of print] Google Scholar
  46. Menzel R (2011) Ultramicroscopy—imaging a whole animal or a whole brain with micron resolution. Front Neurosci 5:11CrossRefPubMedPubMedCentralGoogle Scholar
  47. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592CrossRefPubMedGoogle Scholar
  48. Moy AJ, Lo PC, Choi B (2013) High-resolution visualization of mouse cardiac microvasculature using optical histology. Biomed Opt Express 5(1):69–77CrossRefPubMedPubMedCentralGoogle Scholar
  49. Moy AJ, Capulong BV, Saager RB, Wiersma MP, Lo PC, Durkin AJ, Choi B (2015) Optical properties of mouse brain tissue after optical clearing with FocusClear (TM). J Biomed Opt 20(9):95010CrossRefPubMedGoogle Scholar
  50. Müller MG, Georgakoudi I, Zhang Q, Wu J, Feld MS (2001) Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption. Appl Opt 40(25):4633–4646CrossRefPubMedGoogle Scholar
  51. Munos-Cháuli R (2013) Getting more CLARITY to gain the third dimension. Eur J Anat 17(4):257–258Google Scholar
  52. Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, Choi H, Park YG, Park JY, Hubbert A, McCue M, Vassallo S, Bakh N, Frosch MP, Wedeen VJ, Seung HS, Chung K (2015) Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163(6):1500–1514CrossRefPubMedGoogle Scholar
  53. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33CrossRefPubMedGoogle Scholar
  54. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320CrossRefPubMedGoogle Scholar
  55. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD (2014) Immune modulation in cancer with antibodies. Annu Rev Med 65:185–202CrossRefPubMedGoogle Scholar
  56. Pampaloni F, Ansari N, Stelzer EH (2013) High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352(1):161–177CrossRefPubMedGoogle Scholar
  57. Pampaloni F, Chang BJ, Stelzer EH (2015) Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res 360(1):129–141CrossRefPubMedGoogle Scholar
  58. Pöschinger T, Renner A, Eisa F, Dobosz M, Strobel S, Weber TG, Brauweiler R, Kalender WA, Scheuer W (2014) Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts. Invest Radiol 49(7):445–456CrossRefPubMedGoogle Scholar
  59. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910CrossRefPubMedGoogle Scholar
  60. Richardson DS, Lichtman JW (2015) Clarifying Tissue Clearing. Cell 162(2):246–257CrossRefPubMedPubMedCentralGoogle Scholar
  61. Robertson RT, Levine ST, Haynes SM, Gutierrez P, Baratta JL, Tan ZQ, Longmuir KJ (2015) Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 143(2):225–234CrossRefPubMedGoogle Scholar
  62. Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59(2):129–138CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schwarz MK, Scherbarth A, Sprengel R, Engelhardt J, Theer P, Giese G (2015) Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One 10(5):e0124650CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61CrossRefPubMedGoogle Scholar
  65. Siedentopf H, Zsigmondy R (1903) Über Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 10:1–39Google Scholar
  66. Spalteholz W (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten. S Hierzel, LeipzigGoogle Scholar
  67. Susaki EA, Ueda HR (2016) Whole-body and Whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23(1):137–157CrossRefPubMedGoogle Scholar
  68. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H, Eguchi M, Yamaguchi S, Abe T, Kiyonari H, Shimizu Y, Miyawaki A, Yokota H, Ueda HR (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157(3):726–739CrossRefPubMedGoogle Scholar
  69. Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10(11):1709–1727CrossRefPubMedGoogle Scholar
  70. Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, Ukai H, Ueda HR (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159(4):911–924CrossRefPubMedGoogle Scholar
  71. Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR (2016) Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu Rev Cell Dev Biol [Epub ahead of print] Google Scholar
  72. Tomer R, Khairy K, Keller PJ (2011) Shedding light on the system: studying embryonic development with light sheet microscopy. Curr Opin Genet Dev 21(5):558–565CrossRefPubMedGoogle Scholar
  73. Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9(7):1682–1697CrossRefPubMedPubMedCentralGoogle Scholar
  74. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Bjorkman CC, Gradinaru V (2015) Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 10(11):1860–1896CrossRefPubMedPubMedCentralGoogle Scholar
  75. Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170(Pt 3):229–236CrossRefPubMedGoogle Scholar
  76. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128CrossRefPubMedGoogle Scholar
  77. Yagublu V, Ahmadova Z, Hafner M, Keese M (2012) Review: fluorescent protein-based tumor models. Vivo 26(4):599–607Google Scholar
  78. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, Shah S, Cai L, Gradinaru V (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158(4):945–958CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Annette Feuchtinger
    • 1
    • 2
  • Axel Walch
    • 1
    Email author
  • Michael Dobosz
    • 3
  1. 1.Research Unit Analytical PathologyHelmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Institute of PathologyTechnische Universität MünchenMunichGermany
  3. 3.Discovery Oncology, Pharma Research and Early Development (pRED)Roche Diagnostics GmbHPenzbergGermany

Personalised recommendations