Histochemistry and Cell Biology

, Volume 147, Issue 1, pp 49–61 | Cite as

Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice

  • Christian Mühlfeld
  • Jens Madsen
  • Rose-Marie Mackay
  • Jan Philipp Schneider
  • Julia Schipke
  • Dennis Lutz
  • Bastian Birkelbach
  • Lars Knudsen
  • Marina Botto
  • Matthias Ochs
  • Howard ClarkEmail author
Original Paper


Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D−/− mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D−/− mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D−/− mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D−/− than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D−/− mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse.


Irradiation Bone marrow transplantation Design-based stereology Alveolar epithelium Surfactant 



The authors wish to thank Olaf Bahlmann, Susanne Fassbender, Jan Hegermann, Susanne Kuhlmann and Christa Lichtenberg for technical help.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akiyama J, Hoffman A, Brown C, Allen L, Edmondson J, Poulain F, Hawgood S (2002) Tissue distribution of surfactant proteins A and D in the mouse. J Histochem Cytochem 50:993–996CrossRefPubMedGoogle Scholar
  2. Almeida C, Nagarajan D, Tian J, Leal SW, Wheeler K, Munley M, Blackstock W, Zhao W (2013) The role of alveolar epithelium in radiation-induced lung injury. PLoS ONE 8:e53628CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atochina EN, Beers MF, Hawgood S, Poulain F, Davis C, Fusaro T, Gow AJ (2004) Surfactant protein-D, a mediator of innate lung immunity, alters the products of nitric oxide metabolism. Am J Repir Cell Mol Biol 30:271–279CrossRefGoogle Scholar
  4. Ballinger MN, Hubbard LLN, McMillan TR, Toews GB, Peters-Golden M, Paine R III, Moore BB (2008) Paradoxical role of alveolar macrophage-derived granulocyte macrophage colony-stimulating factor in pulmonary host defense post-bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol 295:L114–L122CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernard ME, Kim H, Rajagopalan MS, Stone B, Salimi U, Rwigema JC, Epperly MW, Shen H, Goff JP, Franicola D, Dixon T, Cao S, Zhang X, Wang H, Stolz DB, Greenberger JS (2012) Repopulation of the irradiation damaged lung with bone marrow-derived cells. In vivo 26:9–18PubMedPubMedCentralGoogle Scholar
  6. Birkelbach B, Lutz D, Ruppert C, Henneke I, Lopez-Rodriguez E, Günther A, Ochs M, Mahavadi P, Knudsen L (2015) Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol 309:L63–L75CrossRefPubMedGoogle Scholar
  7. Botas C, Poulain F, Akiyama J, Brown C, Allen L, Goerke J, Clements J, Carlson E, Gillespie AM, Epstein C, Hawgood S (1998) Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci USA 95:11869–11874CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burkhardt A, Cottier H (1989) Cellular events in alveolitis and the evolution of pulmonary fibrosis. Virchows Arch B Cell Pathol Incl Mol Pathol 58:1–13CrossRefPubMedGoogle Scholar
  9. Chang J, Summer R, Sun X, Fitzsimmons K, Fine A (2005) Evidence that bone marrow cells do not contribute to the alveolar epithelium. Am J Respir Cell Mol Biol 33:335–342CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cooke KR, Nishinakamura R, Martin TR, Kobzik L, Brewer J, Whitsett JA, Bungard D, Murray R, Ferrara JLM (1997) Persistence of pulmonary pathology and abnormal lung function in Il-3/GM-CSF/Il-5 βc receptor-deficient mice despite correction of alveolar proteinosis after BMT. Bone Marrow Transplant 20:657–662CrossRefPubMedGoogle Scholar
  11. Crouch E, Wright JR (2001) Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63:521–554CrossRefPubMedGoogle Scholar
  12. de Saint-Georges L, Van Gorp U, Maisin JR (1988) Response of mouse lung air-blood barrier to X-irradiation: ultrastructural and stereological analysis. Scanning Microsc 2:537–543PubMedGoogle Scholar
  13. Down JD, Yanch JC (2010) Identifying the high radiosensitivity of the lungs of C57L mice in a model of total-body irradiation and bone marrow transplantation. Radiat Res 174:258–263CrossRefPubMedGoogle Scholar
  14. Fedorocko P, Egyed A, Vacek A (2002) Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung. Int J Radiat Biol 78:305–313CrossRefPubMedGoogle Scholar
  15. Fehrenbach H (2001) Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res 2:33–46CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fehrenbach H, Ochs M (1998) Studying lung ultrastructure. In: Uhlig S, Taylor AE (eds) Methods in pulmonary research. Birkhäuser, Basel, pp 429–454CrossRefGoogle Scholar
  17. Franko AJ, Nguyen GK, Sharplin J, Vriend R (1996) A comparison of the ultrastructure of perfusion-deficient and functional lung parenchyma in CBA mice during the late phase after irradiation. Radiat Res 146:586–589CrossRefPubMedGoogle Scholar
  18. Giaid A, Lehnert SM, Chehayeb B, Chehayeb D, Kaplan I, Shenouda G (2003) Inducible nitric oxide synthase and nitrotyrosine in mice with radiation-induced lung damage. Am J Clin Oncol 26:e67–e72PubMedGoogle Scholar
  19. Gram K, Yang S, Steiner M, Somani A, Hawgood S, Blazar BR, Panoskaltsis-Mortari A, Haddad IY (2009) Simultaneous absence of surfactant proteins A and D increases lung inflammation and injury after allogeneic HSCT in mice. Am J Physiol Lung Cell Mol Physiol 296:L167–L175CrossRefPubMedGoogle Scholar
  20. Gross NJ (1977) Pulmonary effects of radiation therapy. Ann Intern Med 86:81–92CrossRefPubMedGoogle Scholar
  21. Hawgood S, Poulain FR (2001) The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63:495–519CrossRefPubMedGoogle Scholar
  22. Herzog EL, Van Arnam J, Hu B, Krause DS (2006) Threshold of lung injury required for the appearance of bone-marrow-derived lung epithelia. Stem Cells 24:1986–1992CrossRefPubMedGoogle Scholar
  23. Hubbard LL, Ballinger MN, Wilke CA, Moore BB (2008) Comparison of conditioning regimens for alveolar macrophage reconstitution and innate immune function post bone marrow transplant. Exp Lung Res 34:263–275CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T (2000) Surfactant metabolism in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 279:L468–L476PubMedGoogle Scholar
  25. Ikegami M, Na C-L, Korfhagen TR, Whitsett JA (2005) Surfactant protein D influences surfactant ultrastructure and uptake by alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 188:L552–L561CrossRefGoogle Scholar
  26. Jackson IL, Vujaskovic Z, Down JD (2010) Revisiting strain-related differences in radiation sensitivity of the mouse lung: recognizing and avoiding the confounding effects of pleural effusions. Radiat Res 173:10–20CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jackson IL, Xu P, Hadley C, Katz BP, McGurk R, Down JD, Vujaskovic Z (2012) A preclinical rodent model of radiation-induced lung injury for medical countermeasure screening in accordance with the FDA animal rule. Health Phys 103:463–473CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jung A, Allen L, Nyengaard JR, Gundersen HJG, Richter J, Hawgood S, Ochs M (2005) Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice. Anat Rec 286A:885–890CrossRefGoogle Scholar
  29. Keane TJ, Van Dyk J, Rider WD (1981) Idiopathic interstitial pneumonia following bone marrow transplantation: the relationship with total body irradiation. Int J Radiat Oncol Biol Phys 7:1365–1370CrossRefPubMedGoogle Scholar
  30. Knudsen L, Ochs M, Mackay R, Townsend P, Deb R, Mühlfeld C, Richter J, Gilbert F, Hawgood S, Reid K, Clark H (2007) Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice. Respir Res 8:70CrossRefPubMedPubMedCentralGoogle Scholar
  31. Knudsen L, Atochina-Vasserman EN, Guo CJ, Scott PA, Haenni B, Beers MF, Ochs M, Gow AJ (2014) NOS2 is critical to the development of emphysema in Sftpd deficient mice but does not affect surfactant homeostasis. PLoS ONE 9:e85722CrossRefPubMedPubMedCentralGoogle Scholar
  32. Korfhagen TR, Sheftelyevich V, Burhans MS, Bruno MD, Ross GF, Wert SE, Stahlman MT, Jobe AH, Ikegami M, Whitsett JA, Fisher JH (1998) Surfactant protein-D regulates surfactant phospholipids homeostasis in vitro. J Biol Chem 273:28438–28443CrossRefPubMedGoogle Scholar
  33. Lund MB, Brinch L, Kongerud J, Boe J (2004) Lung function 5 yrs after allogeneic bone marrow transplantation conditioned with busulphan and cyclophosphamide. Eur Respir J 23:901–905CrossRefPubMedGoogle Scholar
  34. Lutz D, Gazdhar A, Lopez-Rodriguez E, Ruppert C, Mahavadi P, Günther A, Klepetko W, Bates JH, Smith B, Geiser T, Ochs M, Knudsen L (2015) Alveolar derecruitment and collapse induration as crucial mechanisms in lung injury and fibrosis. Am J Respir Cell Mol Biol 52:232–243CrossRefPubMedGoogle Scholar
  35. Madan T, Kishore U, Singh M, Strong P, Clark H, Hussain EM, Reid KBM, Sarma PU (2001) Surfactant proteins A and D protect mice against pulmonary hypersensitivity induced by Aspergillus fumigatus antigens and allergens. J Clin Invest 107:467–475CrossRefPubMedPubMedCentralGoogle Scholar
  36. Madsen J, Kliem A, Tornoe I, Skjodt K, Koch C, Holmskov U (2000) Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164:5866–5870CrossRefPubMedGoogle Scholar
  37. Malaviya R, Gow AJ, Francis M, Abramova EV, Laskin JD, Laskin DL (2015) Radiation-induced lung injury and inflammation in mice: role of inducible nitric oxide synthase and surfactant protein D. Toxicol Sci 144:27–28CrossRefPubMedGoogle Scholar
  38. Miller BE, Hook GE (1990) Hypertrophy and hyperplasia of alveolar type II cells in response to silica and other pulmonary toxicants. Environ Health Perspect 85:15–23CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mühlfeld C, Ochs M (2013) Quantitative microscopy of the lung—a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract. Am J Physiol Lung Cell Mol Physiol 305:L205–L221CrossRefPubMedGoogle Scholar
  40. Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Gehr P, Ochs M (2007) Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 4:11CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mühlfeld C, Knudsen L, Ochs M (2013) Stereology and morphometry of lung tissue. Methods Mol Biol 931:367–390CrossRefPubMedGoogle Scholar
  42. Nishinakamura R, Wiler R, Dirksen U, Morikawa Y, Arai K, Miyajima A, Burdach S, Murray R (1996) The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 βc receptor-deficient mice is reversed by bone marrow transplantation. J Exp Med 183:2657–2662CrossRefPubMedGoogle Scholar
  43. Ochs M (2006) A brief update on lung stereology. J Microsc 222:188–200CrossRefPubMedGoogle Scholar
  44. Ochs M (2010) The closer we look the more we see? Quantitative microscopic analysis of the pulmonary surfactant system. Cell Physiol Biochem 25:27–40CrossRefPubMedGoogle Scholar
  45. Ochs M, Mühlfeld C (2013) Quantitative microscopy of the lung—a problem-based approach. Part 1: basic principles of stereology. Am J Physiol Lung Cell Mol Physiol 305:L15–L22CrossRefPubMedGoogle Scholar
  46. Ochs M, Knudsen L, Allen L, Stumbaugh A, Levitt S, Nyengaard JR, Hawgood S (2004a) GM-CSF mediates alveolar epithelial type II cell changes, but not emphysema-like pathology, in SP-D-deficient mice. Am J Physiol Lung Cell Mol Physiol 287:L1333–L1341CrossRefPubMedGoogle Scholar
  47. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJG (2004b) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124CrossRefPubMedGoogle Scholar
  48. Penney DP, Rubin P (1977) Specific early fine structural changes in the lung following irradiation. Int J Radiat Oncol Biol Phys 2:1123–1132CrossRefPubMedGoogle Scholar
  49. Penney DP, Siemann DW, Rubin P, Shapiro DL, Finkelstein J, Cooper RA Jr (1982) Morphologic changes reflecting early and late effects of irradiation of the distal lung of the mouse: a review. Scan Electron Microsc Pt. 1:413–425Google Scholar
  50. Reed JA, Whitsett JA (1998) Granulocyte-macrophage colony-stimulating factor and pulmonary surfactant homeostasis. Proc Assoc Am Physicians 110:321–332PubMedGoogle Scholar
  51. Rubin P, Siemann DW, Shapiro DL, Finkelstein JN, Penney DP (1983) Surfactant release as an early measure of radiation pneumonitis. Int J Radiat Oncol Biol Phys 9:1669–1673CrossRefPubMedGoogle Scholar
  52. Sampath S, Schultheiss TE, Wong J (2005) Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int J Radiat Oncol Biol Phys 63:876–884CrossRefPubMedGoogle Scholar
  53. Scherle W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26:57–60PubMedGoogle Scholar
  54. Schneider JP, Ochs M (2014) Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods. Am J Physiol Lung Cell Mol Physiol 306:L341–L350CrossRefPubMedGoogle Scholar
  55. Shapiro DL, Finkelstein JN, Rubin P, Penney DP, Siemann DW (1984) Radiation induced secretion of surfactant from cell cultures of type II pneumocytes: an in vitro model of radiation toxicity. Int J Radiat Oncol Biol Phys 10:375–378CrossRefPubMedGoogle Scholar
  56. Stahlman MT, Gray ME, Hull WM, Whitsett JA (2002) Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult tissues. J Histochem Cytochem 50:651–660CrossRefPubMedGoogle Scholar
  57. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136CrossRefPubMedGoogle Scholar
  58. Theise ND, Henegariu O, Grove J, Jagirdar J, Kao PN, Crawford JM, Badve S, Saxena R, Krause DS (2002) Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment from bone marrow. Exp Hematol 30:1333–1338CrossRefPubMedGoogle Scholar
  59. Vedel-Jensen EB, Gundersen HJG (1993) The rotator. J Microsc 170:35–44CrossRefGoogle Scholar
  60. Ward HE, Kemsley L, Davies L, Holecek M, Berend N (1993) The pulmonary response to sublethal thoracic irradiation in the rat. Radiat Res 136:15–21CrossRefPubMedGoogle Scholar
  61. Weibel ER (1979) Stereological methods, vol 1., Practical methods for biological morphometryAcademic Press, LondonGoogle Scholar
  62. Wert SE, Yoshida M, LeVine AM, Ikegami M, Jones T, Ross GF, Fisher JH, Korfhagen TR, Whitsett JA (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci USA 97:5972–5977CrossRefPubMedPubMedCentralGoogle Scholar
  63. Whitsett JA (2005) Surfactant proteins in innate host defense of the lung. Biol Neonate 88:175–180CrossRefPubMedGoogle Scholar
  64. Willführ A, Brandenberger C, Piatkowski T, Grothausmann R, Nyengaard JR, Ochs M, Mühlfeld C (2015) Estimation of the number of alveolar capillaries by the Euler number (Euler-Poincaré characteristic). Am J Physiol Lung Cell Mol Physiol 309:L1286–L1293PubMedGoogle Scholar
  65. Willner J, Vordermark D, Schmidt M, Gassel A, Flentje M, Wirtz H (2003) Secretory activity and cell cycle alteration of alveolar type II cells on the early and late phase after irradiation. Int J Radiat Oncol Biol Phys 55:617–625CrossRefPubMedGoogle Scholar
  66. Yue H, Hu K, Liu W, Jiang J, Chen Y, Wang R (2015) Role of matrix metalloproteinases in radiation-induced lung injury in alveolar epithelial cells of Bama minipigs. Exp Therapeut Med 10:1437–1444Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Mühlfeld
    • 1
    • 2
    • 3
  • Jens Madsen
    • 4
    • 5
    • 6
  • Rose-Marie Mackay
    • 4
  • Jan Philipp Schneider
    • 1
  • Julia Schipke
    • 1
  • Dennis Lutz
    • 1
  • Bastian Birkelbach
    • 1
  • Lars Knudsen
    • 1
    • 2
  • Marina Botto
    • 7
  • Matthias Ochs
    • 1
    • 2
    • 3
  • Howard Clark
    • 4
    Email author
  1. 1.Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany
  2. 2.Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)Member of the German Center for Lung Research (DZL)HannoverGermany
  3. 3.Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy)HannoverGermany
  4. 4.Child Health, Clinical and Experimental Sciences, Faculty of MedicineUniversity of Southampton, Southampton General HospitalSouthamptonUK
  5. 5.Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
  6. 6.National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical ResearchUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
  7. 7.Centre for Complement and Inflammation Research, Division of Immunology and Inflammation, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations