Histochemistry and Cell Biology

, Volume 146, Issue 5, pp 635–644 | Cite as

Soluble calcium-binding proteins (SCBPs) of the earthworm Lumbricus terrestris: molecular characterization and localization by FISH in muscle and neuronal tissue

  • Prasath Thiruketheeswaran
  • Ernst Kiehl
  • Jochen D’Haese
Original Paper


Soluble calcium-binding proteins (SCBPs) of invertebrates probably serve like their vertebrate counterpart—the parvalbumins—as soluble relaxing factors in muscles. Three SCBP isoforms (SCBP1–3) have been isolated and biochemically characterized in the earthworm Lumbricus terrestris (Huch et al. in J Comp Physiol B 158:325–334, 1988). For SCBP2, we found two isoforms named SCBP2a/2b. Both of them together with SCBP3 are present in the body wall muscle. In the gizzard solely, SCBP2b and no SCBP2a or SCBP3 could be detected. The coding sequences of all three isoforms consist of 534 bp for 178 amino acids and contain four EF-hand motifs, of which the second EF-hands are truncated. Recombinant proteins show heat stability and a Ca2+-dependent mobility shift similar to the native proteins, indicating comparable calcium-binding properties. All three isoforms are encoded by three distinct and differentially expressed genes. The genes for SCBP2a, SCBP2b, and SCBP3 are interrupted by only one intron, inserting at nearly the same positions. Northern blot analysis revealed two mRNA transcripts for SCBP2 of approximately 1250 and 1500 kb and one transcript for SCBP3 of approximately 1250 kb. SCBP mRNA was localized by fluorescent in situ hybridization in the body wall and the gizzard. The distribution of the staining intensities resembles that for the myosin ATPase activity and indicates a correlation between the amount of SCBP and speed of muscle contraction. In addition, SCBP mRNA was localized within the nervous tissue, the cerebral and subesophageal ganglia and the ventral nerve cord.


Lumbricus terrestris Soluble calcium-binding protein (SCBP) FISH Body wall and gizzard muscle Nervous tissue 



We gratefully acknowledge the technical assistance of Paul Thomalla.


  1. Arif SH (2009) A Ca2+-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. BioEssays 31:410–421CrossRefPubMedGoogle Scholar
  2. Benzonana G, Cox J, Kohler L, Stein EA (1974) Characterization of a new calcium metalloprotein from crustacean myogen. C R Acad Sci Hebd Seances Acad Sci D 279:1491–1493PubMedGoogle Scholar
  3. Berchtold MW (1996) Parvalbumin. In: Celio MR (ed) Guidebook to the calcium-binding proteins. Oxford University Press, New York, pp 123–125Google Scholar
  4. Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 6:1–3Google Scholar
  5. Birnie GD (1980) Isopycnic centrifugation in ionic media. Biochem Soc Trans 8:513–515CrossRefPubMedGoogle Scholar
  6. Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P (2001) Calcium signalling: an overview. Semin Cell Dev Biol 12:3–10CrossRefPubMedGoogle Scholar
  7. Carlhoff D, D’Haese J (1987) Slow type muscle cells in the earthworm gizzard with a distinct, Ca2+-regulated myosin isoform. J Comp Physiol B 157:589–597CrossRefGoogle Scholar
  8. Collins JH, Johnson JD, Szent-Györgyi AG (1983) Purification and characterization of a scallop sarcoplasmic calcium-binding protein. Biochemistry 22:341–345CrossRefPubMedGoogle Scholar
  9. Cook WJ, Ealick SE, Babu YS, Cox JA, Vijay-Kumar S (1991) Three-dimensional structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor. J Biol Chem 266:652–656PubMedGoogle Scholar
  10. Cox JA (1990) Calcium vector protein and sarcoplasmic calcium binding proteins from invertebrate muscle. In: Dedman JR, Smith VL (eds) Stimulus-response coupling: the role of intracellular calcium. TelfordPress, Caldwell, pp 85–110Google Scholar
  11. Cox JA, Wnuk W, Stein EA (1976) Isolation and properties of a sarcoplasmic calcium-binding protein from crayfish. Biochemistry 15:2613–2618CrossRefPubMedGoogle Scholar
  12. D’Haese J, Carlhoff D (1987) Localization and histochemical characterization of myosin isoforms in earthworm body wall muscle. J Comp Physiol B 157:171–179CrossRefGoogle Scholar
  13. Füchtbauer EM, Rowlerson AM, Gotz K, Friedrich G, Mabuchi K, Gergely J, Jockusch H (1991) Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle. J Histochem Cytochem 39:355–361CrossRefPubMedGoogle Scholar
  14. Gao Y, Gillen CM, Wheatly MG (2006) Molecular characterization of the sarcoplasmic calcium-binding protein (SCP) from crayfish Procambarus clarkii. Comp Biochem Physiol B: Biochem Mol Biol 144:478–487CrossRefGoogle Scholar
  15. Gerday C (1982) Soluble calcium-binding proteins from fish and invertebrate muscle. Mol Physiol 2:63–87Google Scholar
  16. Gerday C (1988) Soluble calcium binding proteins in vertebrate and invertebrate muscles. In: Gerday Ch, Gilles R, Bolis L (eds) Calcium and calcium-binding Proteins. Springer, Berlin, pp 23–39CrossRefGoogle Scholar
  17. Giebing T, Hinssen H, D’Haese J (1994) The complete sequence of a 40-kDa actin-modulating protein from the earthworm Lumbricus terrestris. Eur J Biochem 225:773–779CrossRefPubMedGoogle Scholar
  18. Heizmann CW (1984) Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia 40:910–921CrossRefPubMedGoogle Scholar
  19. Head JF, Perry SV (1974) The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J 137:145–154CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hermann A, Cox JA (1995) Sarcoplasmic calcium-binding protein. Comp Biochem Physiol B Biochem Mol Biol 111:337–345CrossRefPubMedGoogle Scholar
  21. Heukeshoven J, Dernick R (1988) Increased sensitivity for coomassie staining of sodium dodecyl sulfate-polyacrylamide gels using PhastSystem development unit. Electrophoresis 9:60–61CrossRefPubMedGoogle Scholar
  22. Huch R (1991) Untersuchungen zur Wechselwirkung löslicher Calcium-bindender Proteine(SCBP) aus der Regenwurmmuskulatur mit dem Actomyosin und dem sarkoplasmatischen Retikulum. Dissertation, Heinrich-Heine-University, Düsseldorf, GermanyGoogle Scholar
  23. Huch R, D’Haese J (1992) Quantification of the soluble calcium-binding protein (SCBP) in various muscle tissues of the terrestrial oligochaete Lumbricus terrestris. Soil Biol Biochem 24:1231–1235CrossRefGoogle Scholar
  24. Huch R, D’Haese J, Gerday C (1988) A soluble calcium-binding protein from the terrestrial annelid Lumbricus terrestris. J Comp Physiol B 158:325–334CrossRefGoogle Scholar
  25. Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11:277–295CrossRefPubMedGoogle Scholar
  26. Kelly LE, Phillips AM, Delbridge M, Stewart R (1997) Identification of a gene family from Drosophila melanogaster encoding proteins with homology to invertebrate sarcoplasmic calcium-binding proteins (SCPS). Insect Biochem Mol Biol 27:783–792CrossRefPubMedGoogle Scholar
  27. Kerschbaum HH, Kainz V, Hermann A (1992) Sarcoplasmic calcium-binding protein-immunoreactive material in the central nervous system of the snail, Helix pomatia. Brain Res 597:339–342CrossRefPubMedGoogle Scholar
  28. Khan MA, Papadimitriou JM, Holt PG, Kakulas BA (1972) A calcium-citro-phosphate technique for the histochemical localization of myosin ATPase. Stain Technol 47:277–281CrossRefPubMedGoogle Scholar
  29. Kiehl E, D’Haese J (1992) A soluble calcium-binding protein (SCBP) present in Drosophila melanogaster and Calliphora erythrocephala muscle cells. Comp Biochem Physiol B 102:475–482PubMedGoogle Scholar
  30. Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326PubMedGoogle Scholar
  31. Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209CrossRefPubMedGoogle Scholar
  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  33. Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10:637–643CrossRefPubMedGoogle Scholar
  34. Mierendorf RC, Percy C, Young RA (1987) Gene isolation by screening lambda gt11 libraries with antibodies. Methods Enzymol 152:458–469CrossRefPubMedGoogle Scholar
  35. Pauls T, Cox J, Heizmann C, Hermann A (1993) Sarcoplasmic calcium-binding proteins in Aplysia nerve and muscle cells. Eur J Neurosci 5:549–559CrossRefPubMedGoogle Scholar
  36. Prasath T, Greven H, D′Haese J (2012) EF-hand proteins and the regulation of actin-myosin interaction in the eutardigrade Hypsibius klebelsbergi (Tardigrada). J Exp Zool A Ecol Genet Physiol 317:311–320CrossRefPubMedGoogle Scholar
  37. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rohrback ES, Wheatly MG, Gillen CM (2015) Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants. Comp Biochem Physiol B Biochem Mol Biol 179:57–63CrossRefGoogle Scholar
  39. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:13CrossRefGoogle Scholar
  40. Schwaller B, Dick J, Dhoot G, Carroll S, Vrbova G, Nicotera P, Pette D, Wyss A, Bluethmann H, Hunziker W, Celio MR (1999) Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. Am J Physiol 276:C395–C403PubMedGoogle Scholar
  41. Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28 k, calretinin and parvalbumin, in cerebellar physiology: studies with knockout mice. Cerebellum 1:241–258CrossRefPubMedGoogle Scholar
  42. Takagi T, Cox JA (1990) Amino acid sequences of four isoforms of Amphioxus sarcoplasmic calcium-binding proteins. Eur J Biochem 192:387–399CrossRefPubMedGoogle Scholar
  43. Takagi T, Konishi K (1984a) Amino acid sequence of alpha chain of sarcoplasmic calcium binding protein obtained from shrimp tail muscle. J Biochem 95:1603–1615PubMedGoogle Scholar
  44. Takagi T, Konishi K (1984b) Amino acid sequence of the beta chain of sarcoplasmic calcium binding protein (SCP) obtained from shrimp tail muscle. J Biochem 96:59–67PubMedGoogle Scholar
  45. Takagi T, Kazuhiko K, Cox JA (1986) Amino acid sequence of two sarcoplasmic calcium-binding proteins from the protochordate Amphioxus. Biochemistry 25:3585–3592CrossRefGoogle Scholar
  46. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354CrossRefPubMedPubMedCentralGoogle Scholar
  47. Walsh MP, Valentine KA, Ngai PK, Carruthers CA, Hollenberg MD (1984) Ca2+-dependent hydrophobic-interaction chromatography: isolation of a novel Ca2+-binding protein and protein kinase C from bovine brain. Biochem J 224:117–127CrossRefPubMedPubMedCentralGoogle Scholar
  48. Watanabe Y, Hu Y, Hidaka H (1997) Identification of a specific amino acid cluster in the calmodulin-binding domain of the neuronal nitric oxide synthase. FEBS Lett 403:75–78CrossRefPubMedGoogle Scholar
  49. White AJ, Northcutt MJ, Rohrback SE, Carpenter RO, Niehaus-Sauter MM, Gao Y, Wheatly MG, Gillen CM (2011) Characterization of sarcoplasmic calcium binding protein (SCP) variants from freshwater crayfish Procambarus clarkii. Comp Biochem Physiol B: Biochem Mol Biol 160:8–14CrossRefGoogle Scholar
  50. Wnuk W, Cox J, Stein EA (1982) Parvalbumin and other sarcoplasmic Ca2+-binding proteins. In: Cheung WY (ed) Calcium and cell function. Academic Press, New York, pp 243–278CrossRefGoogle Scholar
  51. Wnuk W, Jauregui-Adell J (1983) Polymorphism in high-affinity calcium-binding proteins from crustacean sarcoplasm. Eur J Biochem 131:177–182CrossRefPubMedGoogle Scholar
  52. Zhang Z, Chen D, Wheatly MG (2000) Cloning and characterization of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) from crayfish axial muscle. J Exp Biol 203:3411–3423PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Prasath Thiruketheeswaran
    • 1
  • Ernst Kiehl
    • 1
  • Jochen D’Haese
    • 1
  1. 1.Institute for Cell Biology, Department BiologyHeinrich-Heine-University DüsseldorfDüsseldorfGermany

Personalised recommendations