Histochemistry and Cell Biology

, Volume 146, Issue 3, pp 255–266 | Cite as

Dense small molecule labeling enables activator-dependent STORM by proximity mapping

  • Ye Chen
  • Min Gu
  • Peter W. Gunning
  • Sarah M. Russell
Original Paper


Stochastic optical reconstruction microscopy (STORM) enables high-resolution imaging, but multi-channel 3D imaging is problematic because of chromatic aberrations and alignment errors. The use of activator-dependent STORM in which spectrally distinct activators can be coupled with a single reporter can circumvent such issues. However, the standard approach of linking activators and reporters to a single antibody molecule is hampered by low labeling density and the large size of the antibody. We proposed that small molecule labels might enable activator-dependent STORM if the reporter or activator were linked to separate small molecules that bound within 3.5 nm of each other. This would greatly increase the labeling density and therefore improve resolution. We tested various mixtures of phalloidin- or mCling-conjugated fluorophore to demonstrate this feasibility. The specific activation was dependent on the choice of activator, its density, a matching activating laser and its power. In addition to providing an effective means of multi-channel 3D STORM imaging, this method also provides information about the local proximity between labels, potentially enabling super-resolved mapping of the conformation of the labeled structures.


Super-resolution imaging Single-molecule localization microscopy Actin Small molecule labels Multi-channel imaging 



We thank Sara Jones (Harvard University) for technical advice on STORM and Andrew Clayton (Swinburne University of Technology) for helpful discussions. The work was supported by a project grant from the Australian National Health and Medical Research Foundation (APP1061647), the Kids Cancer Project to PWG, and fellowships to SMR from the Australian Research Council (Future Fellowship) and the Australian National Health and Medical Research Foundation (Senior Research Fellowship).

Compliance with ethical standards

Conflict of interest

None of the authors has a conflict of interest related to this work.

Supplementary material

418_2016_1451_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2818 kb)


  1. Altman RB, Terry DS, Zhou Z, Zheng Q, Geggier P, Kolster RA, Zhao Y, Javitch JA, Warren JD, Blanchard SC (2012) Cyanine fluorophore derivatives with enhanced photostability. Nat Methods 9(1):68–71CrossRefGoogle Scholar
  2. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94(10):108101CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen Y, Lin H, Ludford-Menting MJ, Clayton AH, Gu M, Russell SM (2015) Polarization of excitation light influences molecule counting in single-molecule localization microscopy. Histochem Cell Biol 143(1):11–19CrossRefPubMedGoogle Scholar
  5. Conley NR, Biteen JS, Moerner WE (2008) Cy3–Cy5 covalent heterodimers for single-molecule photoswitching. J Phys Chem B 112(38):11878–11880CrossRefPubMedPubMedCentralGoogle Scholar
  6. DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE (2002) Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 115(Pt 23):4649–4660CrossRefPubMedGoogle Scholar
  7. Doksani Y, Wu J, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155(2):345–356CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dow LE, Kauffman JS, Caddy J, Zarbalis K, Peterson AS, Jane SM, Russell SM, Humbert PO (2007) The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 26(16):2272–2282CrossRefPubMedGoogle Scholar
  9. Flors C, Ravarani CN, Dryden DT (2009) Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 10(13):2201–2204CrossRefPubMedGoogle Scholar
  10. Fu N, Xiong Y, Squier TC (2012) Synthesis of a targeted biarsenical Cy3–Cy5 affinity probe for super-resolution fluorescence imaging. J Am Chem Soc 134(45):18530–18533CrossRefPubMedGoogle Scholar
  11. Geertsema HJ, Schulte AC, Spenkelink LM, McGrath WJ, Morrone SR, Sohn J, Mangel WF, Robinson A, van Oijen AM (2015) Single-molecule imaging at high fluorophore concentrations by local activation of dye. Biophys J 108(4):949–956CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP (2015) Tropomyosin—master regulator of actin filament function in the cytoskeleton. J Cell Sci 128(16):2965–2974CrossRefPubMedGoogle Scholar
  13. Heidecker M, Yan-Marriott Y, Marriott G (1995) Proximity relationships and structural dynamics of the phalloidin binding site of actin filaments in solution and on single actin filaments on heavy meromyosin. Biochemistry 34(35):11017–11025CrossRefPubMedGoogle Scholar
  14. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176CrossRefPubMedGoogle Scholar
  15. Hess S, Gould T, Gunewardene M, Bewersdorf J, Mason M (2009) Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy. Micro Nano Technol Bioanal 544:483–522CrossRefGoogle Scholar
  16. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279–280CrossRefPubMedGoogle Scholar
  17. Huang ZJ, Haugland RP, You WM, Haugland RP (1992) Phallotoxin and actin binding assay by fluorescence enhancement. Anal Biochem 200(1):199–204CrossRefPubMedGoogle Scholar
  18. Huang B, Jones SA, Brandenburg B, Zhuang X (2008a) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang B, Wang W, Bates M, Zhuang X (2008b) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813CrossRefPubMedPubMedCentralGoogle Scholar
  20. Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, Zheng Q, Blanchard SC (2014) The bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20C:103–111CrossRefGoogle Scholar
  21. Kiuchi T, Higuchi M, Takamura A, Maruoka M, Watanabe N (2015) Multitarget super-resolution microscopy with high-density labeling by exchangeable probes. Nat Methods 12(8):743–746CrossRefPubMedGoogle Scholar
  22. Kwon J, Hwang J, Park J, Han GR, Han KY, Kim SK (2015) RESOLFT nanoscopy with photoswitchable organic fluorophores. Sci Rep 5:17804CrossRefPubMedPubMedCentralGoogle Scholar
  23. Legant WR, Shao L, Grimm JB, Brown TA, Milkie DE, Avants BB, Lavis LD, Betzig E (2016) High-density three-dimensional localization microscopy across large volumes. Nat Methods 13:359–365CrossRefPubMedGoogle Scholar
  24. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G, Plass T, Mueller V, Reymond L, Corrêa I, Luo Z-G, Schultz C, Lemke E, Heppenstall P, Eggeling C, Manley S, Johnsson K (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chem 5(2):132–139CrossRefGoogle Scholar
  25. Nanguneri S, Flottmann B, Herrmannsdörfer F, Thomas K, Heilemann M (2014) Single-molecule super-resolution imaging by tryptophan-quenching-induced photoswitching of phalloidin-fluorophore conjugates. Microsc Res Tech 77:510–516CrossRefPubMedGoogle Scholar
  26. Nickerson A, Huang T, Lin L-JJ, Nan X (2014) Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein–protein interactions in cells. PLoS One 9(6):e100589CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grunwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10:557–562CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oda T, Namba K, Maeda Y (2005) Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis. Biophys J 88(4):2727–2736CrossRefPubMedPubMedCentralGoogle Scholar
  29. Opazo F, Levy M, Byrom M, Schafer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9(10):938–939CrossRefPubMedGoogle Scholar
  30. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643CrossRefPubMedPubMedCentralGoogle Scholar
  31. Revelo NH, Kamin D, Truckenbrodt S, Wong AB, Reuter-Jessen K, Reisinger E, Moser T, Rizzoli SO (2014) A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J Cell Biol 205(4):591–606CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584CrossRefPubMedGoogle Scholar
  33. Rinnerthaler G, Geiger B, Small JV (1988) Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J Cell Biol 106(3):747–760CrossRefPubMedGoogle Scholar
  34. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sabanayagam CR, Eid JS, Meller A (2005) Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Forster resonance energy transfer. J Chem Phys 123(22):224708CrossRefPubMedGoogle Scholar
  36. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103(50):18911–18916CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shim S-H, Xia C, Zhong G, Babcock H, Vaughan J, Huang B, Wang X, Xu C, Bi G-Q, Zhuang X (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109(35):13978–13983CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, Gunning PW, Lappalainen P (2011) A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 21(7):539–550CrossRefPubMedGoogle Scholar
  39. van de Linde S, Aufmkolk S, Franke C, Holm T, Klein T, Loschberger A, Proppert S, Wolter S, Sauer M (2013) Investigating cellular structures at the nanoscale with organic fluorophores. Chem Biol 20(1):8–18CrossRefPubMedGoogle Scholar
  40. van der Velde J, Ploetz E, Hiermaier M, Oelerich J, de Vries J, Roelfes G, Cordes T (2013) Mechanism of intramolecular photostabilization in self-healing cyanine fluorophores. ChemPhysChem 14(18):4084–4093CrossRefPubMedGoogle Scholar
  41. von der Ecken J, Muller M, Lehman W, Manstein DJ, Penczek PA, Raunser S (2015) Structure of the F-actin-tropomyosin complex. Nature 519(7541):114–117CrossRefPubMedGoogle Scholar
  42. Xia T, Li N, Fang X (2013) Single-molecule fluorescence imaging in living cells. Annu Rev Phys Chem 64:459–480CrossRefPubMedGoogle Scholar
  43. Xu K, Babcock H, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zessin PJ, Finan K, Heilemann M (2012) Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol 177(2):344–348CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Immune Signalling LaboratoryPeter MacCallum Cancer CentreEast MelbourneAustralia
  2. 2.Centre for Micro-Photonics, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  3. 3.Artificial-Intelligence Nanophotonics Laboratory, School of ScienceRMIT UniversityMelbourneAustralia
  4. 4.School of Medical SciencesUNSW AustraliaSydneyAustralia
  5. 5.Department of PathologyThe University of MelbourneParkvilleAustralia
  6. 6.Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleAustralia

Personalised recommendations