Histochemistry and Cell Biology

, Volume 146, Issue 1, pp 13–31 | Cite as

Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMs) in diabetic mice after prolonged high-fat diet

  • Viviane Tannuri F. L. Falcão
  • Daniela A. Maschio
  • Camila Calvo de Fontes
  • Ricardo B. Oliveira
  • Junia C. Santos-Silva
  • Anna Carolina Soares Almeida
  • Emerielle C. Vanzela
  • Maria Tereza Cartaxo
  • Carolina P. F. Carvalho
  • Carla Beatriz Collares-Buzato
Original Paper

Abstract

Intercellular junctions play a role in regulating islet cytoarchitecture, insulin biosynthesis and secretion. In this study, we investigated the animal metabolic state as well as islet histology and cellular distribution/expression of CAMs and F-actin in the endocrine pancreas of C57BL/6/JUnib mice fed a high-fat diet (HFd) for a prolonged time period (8 months). Mice fed a HFd became obese and type 2 diabetic, displaying significant peripheral insulin resistance, hyperglycemia and moderate hyperinsulinemia. Isolated islets of HFd-fed mice displayed a significant impairment of glucose-induced insulin secretion associated with a diminished frequency of intracellular calcium oscillations compared with control islets. No marked change in islet morphology and cytoarchitecture was observed; however, HFd-fed mice showed higher beta cell relative area in comparison with controls. As shown by immunohistochemistry, ZO-1, E-, N-cadherins, α- and β-catenins were expressed at the intercellular contact site of endocrine cells, while VE-cadherin, as well as ZO-1, was found at islet vascular compartment. Redistribution of N-, E-cadherins and α-catenin (from the contact region to the cytoplasm in endocrine cells) associated with increased submembranous F-actin cell level as well as increased VE-cadherin islet immunolabeling was observed in diabetic mice. Increased gene expression of VE-cadherin and ZO-1, but no change for the other proteins, was observed in islets of diabetic mice. Only in the case of VE-cadherin, a significant increase in islet content of this CAM was detected by immunoblotting in diabetic mice. In conclusion, CAMs are expressed by endocrine and endothelial cells of pancreatic islets. The distribution/expression of N-, E- and VE-cadherins as well as α-catenin and F-actin is significantly altered in islet cells of obese and diabetic mice.

Keywords

Cell adhesion molecules Cell–cell interactions Pancreatic beta cells Type 2 diabetes mellitus High-fat diet Insulin secretion 

Supplementary material

418_2016_1428_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Aberle H, Schwartz H, Kemler R (1996) Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 61(4):514–523CrossRefPubMedGoogle Scholar
  2. Agudo J, Ayuso E, Jimenez V, Casellas A, Mallol C, Salavert A, Bosch F (2012) Vascular endothelial growth factor-mediated islet hypervascularization and inflammation contribute to progressive reduction of β-cell mass. Diabetes 61(11):2851–2861. doi:10.2337/db12-0134 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahrén B, Pacini G (2002) Insufficient islet compensation to insulin resistance versus reduced glucose effectiveness in glucose-intolerant mice. Am J Physiol Endocrinol Metab 283(4):E738–E744CrossRefPubMedGoogle Scholar
  4. Ahrens T, Lambert M, Pertz O, Sasaki T, Schulthess T, Mège RM, Timpl R, Engel J (2003) Homoassociation of VE-cadherin follows a mechanism common to “classical” cadherins. J Mol Biol 325(4):733–742CrossRefPubMedGoogle Scholar
  5. Andralojc KM, Mercalli A, Nowak KW, Albarello L, Calcagno R, Luzi L, Bonifacio E, Doglioni C, Piemonti L (2009) Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52:486–493. doi:10.1007/s00125-008-1238-y CrossRefPubMedGoogle Scholar
  6. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143CrossRefPubMedGoogle Scholar
  7. Benmerah A, Scott M, Poupon V, Marullo S (2003) Nuclear functions for plasma membrane associated proteins? Traffic 4:503–511CrossRefPubMedGoogle Scholar
  8. Bergsten P (2000) Pathophysiology of impaired pulsatile insulin release. Diabetes Metab Res Rev 16:179–191CrossRefPubMedGoogle Scholar
  9. Bosco D, Rouiller DG, Halban PA (2007) Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity. J Endocrinol 194(1):21–29CrossRefPubMedGoogle Scholar
  10. Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W, Dejana E (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641PubMedGoogle Scholar
  11. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53(9):1087–1097CrossRefPubMedGoogle Scholar
  12. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110CrossRefPubMedGoogle Scholar
  13. Calabrese A, Caton D, Meda P (2004) Differentiating the effects of Cx36 and E-cadherin for proper insulin secretion of MIN6 cells. Exp Cell Res 294:379–391CrossRefPubMedGoogle Scholar
  14. Cannito S, Novo E, Bonzo LV, Busletta C, Colombatto S, Parola M (2010) Epithelial–mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12(12):1383–1430. doi:10.1089/ars.2009.2737 CrossRefPubMedGoogle Scholar
  15. Carvalho CPF, Martins JC, Da Cunha DA, Boschero AC, Collares-Buzato CB (2006) Histomorphology and ultrastructure of pancreatic islet tissue during in vivo maturation of rat pancreas. Ann Anat 188:221–234CrossRefPubMedGoogle Scholar
  16. Carvalho CPF, Barbosa HC, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2010) Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets. Diabetologia 53(7):1428–1437. doi:10.1007/s00125-010-1726-8 CrossRefPubMedGoogle Scholar
  17. Carvalho CP, Oliveira RB, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2012) Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice. Am J Physiol Endocrinol Metab 303:144–145. doi:10.1152/ajpendo.00489.2011 CrossRefGoogle Scholar
  18. Carvell MJ, Marsh PJ, Persaud SJ, Jones PM (2007) E-cadherin interactions regulate beta-cell proliferation in islet-like structures. Cell Physiol Biochem 20(5):617–626CrossRefPubMedGoogle Scholar
  19. Chang-Chen KJ, Mullur R, Bernal-Mizrachi E (2008) Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord 9(4):329–343. doi:10.1007/s11154-008-9101-5 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Collares-Buzato CB, Jepson MA, Simmons NL, Hirst BH (1998) Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. Eur J Cell Biol 76:85–92CrossRefPubMedGoogle Scholar
  21. Collares-Buzato CB, Carvalho CPF, Furtado AG, Boschero AC (2004) Upregulation of the expression of tight and adherens junction-associated proteins during maturation of neonatal pancreatic islets in vitro. J Mol Histol 35:811–822CrossRefPubMedGoogle Scholar
  22. Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A (2002) The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109:987–991CrossRefPubMedPubMedCentralGoogle Scholar
  23. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820CrossRefPubMedPubMedCentralGoogle Scholar
  24. Coronel-Cruz C, Hernández-Tellez B, López-Vancell R, López-Vidal Y, Berumen J et al (2013) Connexin 30.2 is expressed in mouse pancreatic beta cells. Biochem Biophys Res Commun 438(4):772–777. doi:10.1016/j.bbrc.2013.06.100 CrossRefPubMedGoogle Scholar
  25. Dai C, Brissov M, Reinert RB, Nyman L, Liu EH, Thompson C, Powers AC (2013) Pancreatic islet vasculature adapts to insulin resistance through dilation and not angiogenesis. Diabetes 62(12):4144–4153. doi:10.2337/db12-1657 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dejana E, Spagnuolo R, Bazzoni G (2001) Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost 86:308–315PubMedGoogle Scholar
  27. Drolet MC, Roussel E, Deshaies Y, Couet J, Arsenault M (2006) A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6 J mice. J Am Coll Cardiol 47(4):850–855CrossRefPubMedGoogle Scholar
  28. Duvillie B, Currie C, Chrones T, Bucchini D, Jami J, Joshi RL, Hill DJ (2002) Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin. Endocrinology 143:1530–1537PubMedGoogle Scholar
  29. Ebnet K (2008) Organization of multiprotein complexes at cell-cell junction. Histochem Cell Biol 130:1–20. doi:10.1007/s00418-008-0418-7 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Esni F, Täljedal IB, Perl AK, Cremer H, Christofori G, Semb H (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 144(2):325–337CrossRefPubMedPubMedCentralGoogle Scholar
  31. Figeac FBU, Faro M, Chelali N, Portha B, Movassat J (2009) Neonatal growth and regeneration of β-cells are regulated by the Wnt/β-catenin signaling in normal and diabetic rats. Am J Physiol Endocrinol Metab 298:245–256. doi:10.1152/ajpendo.00538.2009 CrossRefGoogle Scholar
  32. Gilon P, Shepherd RM, Henquin JC (1993) Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidenced in single pancreatic islets. J Biol Chem 268:22265–22268PubMedGoogle Scholar
  33. Gomez-Dumm CL, Semino MC, Gagliardino JJ (1990) Sequential morphological changes in pancreatic islets of spontaneously diabetic rats. Pancreas 5(5):533–539CrossRefPubMedGoogle Scholar
  34. Gómez-Pérez Y, Amengual-Cladera E, Català-Niell A, Thomàs-Moyà E, Gianotti M, Proenza AM, Lladó I (2008) Gender dimorphism in high fat diet-induced insulin resistance in skeletal muscle of aged rats. Cell Physiol Biochem 22:539–548CrossRefPubMedGoogle Scholar
  35. Green AD, Vasu S, McClenaghan NH, Flatt PR (2015) Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells. Pflugers Arch 467(10):2219–2228. doi:10.1007/s00424-014-1681-1 CrossRefPubMedGoogle Scholar
  36. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514. doi:10.1038/nrm2927 CrossRefPubMedGoogle Scholar
  37. Hauge-Evans AC, Squires PE, Persaud SJ, Jones PM (1999) Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets. Diabetes 48(7):1402–1408CrossRefPubMedGoogle Scholar
  38. Henningsson R, Salehi A, Lundquist I (2002) Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am J Physiol Cell Physiol 283:296–304CrossRefGoogle Scholar
  39. Herrera PL (2009) Transgenic and other experimental models of pancreas and islet damage. Diabetes Obes Metab 11(4):81–86. doi:10.1111/j.1463-1326.2009.01104.x Google Scholar
  40. Hoetelmans RW, Prins FA, Cornelese-ten Velde I, van der Meer J, van de Velde CJ, van Dierendonck JH (2001) Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy. Appl Immunohistochem Mol Morphol 9:346–351PubMedGoogle Scholar
  41. Jain R, Lammert E (2009) Cell–cell interactions in the endocrine pancreas. Diabetes Obes Metab 11(Suppl. 4):159–167. doi:10.1111/j.1463-1326.2009.01102.x CrossRefPubMedGoogle Scholar
  42. Johansson JK, Voss U, Kesavan G, Kostetskii I, Wierup N, Radice GL, Semb H (2010) N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover. Genesis 48(6):374–381. doi:10.1002/dvg.20628 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Weir GC (1999) Chronic hyperglycemia triggers loss of pancreatic cell differentiation in an animal model of diabetes. J Biol Chem 274(20):14112–14121CrossRefPubMedGoogle Scholar
  44. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 14:840–846CrossRefGoogle Scholar
  45. Kai AKL, Lam AKM, Chen Y, Tai ACP, Zhang X, Lai AKW, Yeung PKK, Tam S, Wang J, Lam KS, Vanhoutte PM, Bos JL, Chung SSM, Xu A, Chung SK (2013) Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome. FASEB J 27:4122–4135CrossRefPubMedGoogle Scholar
  46. Kilimnik G, Zhao B, Jo J, Periwal V, Witkowski P, Misawa R, Hara M (2011) Altered islet composition and disproportionate loss of large islets in patients with type 2 diabetes. PLoS One 6(11):e27445. doi:10.1371/journal.pone.0027445 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M (2009) Islet architecture: a comparative study. Islets 1(2):129–136. doi:10.4161/isl.1.2.9480 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lawler K, O’Sullivan G, Long A, Kenny D (2009) Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 100:1082–1087CrossRefPubMedGoogle Scholar
  49. Leite AR, Carvalho CP, Furtado AG, Barbosa HC, Boschero AC, Collares-Buzato CB (2005) Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Can J Physiol Pharmacol 83:142–151CrossRefPubMedGoogle Scholar
  50. Lewis JE, Wah JK 3rd, Sass KM, Jensen PJ, Johnson KR, Wheelock MJ (1997) Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J Cell Biol 136(4):919–934CrossRefPubMedPubMedCentralGoogle Scholar
  51. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  52. Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL (2009) E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant 18(12):1281–1287. doi:10.3727/096368909X474258 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luther MJ, Davies E, Muller D, Harrison M, Bone AJ, Persaud SJ, Jones PM (2005) Cell-to-cell contact influences proliferative marker expression and apoptosis in MIN6 cells grown in islet-like structures. Am J Physiol Endocrinol Metab 288(3):E502–E509CrossRefPubMedGoogle Scholar
  54. Meda P (2013) Protein-mediated interactions of pancreatic islet cells. Scientifica 2013:621249. doi:10.1155/2013/621249 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mese G, Richard G, White TW (2007) Gap junctions: basic structure and functions. J Invest Dermatol 127(11):2516–2524CrossRefPubMedGoogle Scholar
  56. Miravet S, Piedra J, Castaño J, Raurell I, Francí C, Duñach M, García de Herreros A (2003) Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates beta-catenin-mediated transcription. Mol Cell Biol 23(20):7391–7402CrossRefPubMedPubMedCentralGoogle Scholar
  57. Murtaugh LC (2008) The what, where, when and how of Wnt/beta-catenin signaling in pancreas development. Organogenesis 4(2):81–86CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ngamjariyawat A, Turpaev K, Vasylovska S, Kozlova EN, Welsh N (2013) Co-culture of neural crest stem cells (NCSC) and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death. PLoS One 8(4):e61828. doi:10.1371/journal.pone.0061828 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nlend RN, Michon L, Bavamian S, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P (2006) Connexin36 and pancreatic beta cell functions. Arch Physiol Biochem 112:74–81CrossRefPubMedGoogle Scholar
  60. Oliveira RB, Maschio DA, Carvalho CPF, Collares-Buzato CB (2015) Influence of gender and time diet exposure on endocrine pancreas remodeling in response to high fat diet-induced metabolic disturbances in mice. Ann Anat 200:88–97. doi:10.1016/j.aanat.2015.01.007 CrossRefPubMedGoogle Scholar
  61. Orci L (1976) The microanatomy of the islets of Langerhans. Metabolism 25:1303–1313CrossRefPubMedGoogle Scholar
  62. Parnaud G, Gonelle-Gispert C, Morel P, Giovannoni L, Muller YD, Meier R, Borot S, Berney T, Bosco D (2011) Cadherin engagement protects human beta-cells from apoptosis. Endocrinology 152(12):4601–4609. doi:10.1210/en.2011-1286 CrossRefPubMedGoogle Scholar
  63. Parnaud G, Lavallard V, Bedat B, Matthey-Doret D, Morel P, Berney T, Bosco D (2015) Cadherin engagement improves insulin secretion of single human β-cells. Diabetes 64:887–896. doi:10.2337/db14-0257 CrossRefPubMedGoogle Scholar
  64. Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 112(4):535–548CrossRefPubMedGoogle Scholar
  65. Peyot M-L, Pepin E, Lamontagne J, Latour MG, Zarrouki B, Lussier R, Pineda M, Jetton TL, Madiraju MSR, Joly E, Prentki M (2010) B-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 59:2178–2187CrossRefPubMedPubMedCentralGoogle Scholar
  66. Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66CrossRefPubMedGoogle Scholar
  68. Ravier MA, Sehlin J, Henquin JC (2002) Disorganization of cytoplasmic Ca(2+) oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45(8):1154–1163CrossRefPubMedGoogle Scholar
  69. Rieck S, White P, Schug J, Fox AJ, Smirnova O, Gao N, Kaestner KH (2009) The transcriptional response of the islet to pregnancy in mice. Mol Endocrinol 23(10):1702–1712. doi:10.1210/me.2009-0144 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rogers GJ, Hodgkin MN, Squires PE (2007) E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell Physiol Biochem 20(6):987–994CrossRefPubMedGoogle Scholar
  71. Rossmeisl M, Rim JS, Koza RA, Kozak LP (2003) Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52:1958–1966CrossRefPubMedGoogle Scholar
  72. Sandu O, Song K, Cai W, Zheng F, Uribarri J, Vlassara H (2005) Insulin resistance and type 2 diabetes in high-fat–fed mice are linked to high glycotoxin intake. Diabetes 54:2314–2319CrossRefPubMedGoogle Scholar
  73. Santos-Silva JC, Carvalho CP, de Oliveira RB, Boschero AC, Collares-Buzato CB (2012) Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells. Can J Physiol Pharmacol 90:837–850. doi:10.1139/y2012-064 CrossRefPubMedGoogle Scholar
  74. Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246CrossRefPubMedGoogle Scholar
  75. Shim Y, Nam MH, Hyuk SW, Yoon SY, Song JM (2015) Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction. Anal Chim Acta 853:501–507. doi:10.1016/j.aca.2014.10.036 CrossRefPubMedGoogle Scholar
  76. Shirakawa J, Amo K, Ohminami H, Orime K, Togashi Y, Ito Y, Terauchi Y (2011) Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased β cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes. J Biol Chem 286(29):25467–25476. doi:10.1074/jbc.M110.217216 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Singh R, Lei P, Andreadis ST (2009) PKC-delta binds to E-cadherin and mediates EGF-induced cell scattering. Exp Cell Res 315:2899–2913. doi:10.1016/j.yexcr.2009.07.002 CrossRefPubMedGoogle Scholar
  78. Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67CrossRefPubMedGoogle Scholar
  79. Spadaro D, Tapia R, Pulimeno P, Citi S (2012) The control of gene expression and cell proliferation by the epithelial apical junctional complex. Essays Biochem 53:83–93. doi:10.1042/bse0530083 CrossRefPubMedGoogle Scholar
  80. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6 J mice. Diabetes 37(9):1163–1167CrossRefPubMedGoogle Scholar
  81. Tripathy D, Chavez AO (2010) Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 10(3):184–191. doi:10.1007/s11892-010-0115-5 CrossRefPubMedGoogle Scholar
  82. Wakae-Takada N, Xuan S, Watanabe K, Meda P, Leib RL (2013) Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia 56(4):856–866. doi:10.1007/s00125-012-2824-6 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(suppl 3):215–219CrossRefGoogle Scholar
  84. Winzell MS, Holm C, Ahrén B (2003) Downregulation of islet hormone-sensitive lipase during long-term high-fat feeding. Biochem Biophys Res Commun 304:273–278CrossRefPubMedGoogle Scholar
  85. Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa J, Matsuzawa Y (2002) Overexpression of dominant-negative mutant hepatocyte nuclear factor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 51(1):114–123CrossRefPubMedGoogle Scholar
  86. Yin T, Green KJ (2004) Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol 15(6):665–677CrossRefPubMedGoogle Scholar
  87. Zanone MM, Favaro E, Camussi G (2008) From endothelial to beta cells: insights into pancreatic islet microendothelium. Curr Diabetes Rev 4(1):1–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Viviane Tannuri F. L. Falcão
    • 1
    • 3
  • Daniela A. Maschio
    • 1
  • Camila Calvo de Fontes
    • 5
  • Ricardo B. Oliveira
    • 1
  • Junia C. Santos-Silva
    • 1
    • 2
  • Anna Carolina Soares Almeida
    • 4
  • Emerielle C. Vanzela
    • 2
  • Maria Tereza Cartaxo
    • 3
  • Carolina P. F. Carvalho
    • 5
  • Carla Beatriz Collares-Buzato
    • 1
  1. 1.Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Structural and Functional Biology, Institute of BiologyUniversity of Campinas (UNICAMP)CampinasBrazil
  3. 3.Institute of Biology, College of NursingUniversity of Pernambuco (UPE)RecifeBrazil
  4. 4.Department of BiologyFederal University of Pernambuco (UFRPE)RecifeBrazil
  5. 5.Department of BiosciencesFederal University of São PauloSantosBrazil

Personalised recommendations