Advertisement

Histochemistry and Cell Biology

, Volume 145, Issue 4, pp 359–372 | Cite as

Nucleolar DNA: the host and the guests

  • E. SmirnovEmail author
  • D. Cmarko
  • T. Mazel
  • M. Hornáček
  • I. Raška
Review

Abstract

Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.

Keywords

Nucleolus rDNA Transcription activity Replication NADs DNA staining 

Notes

Acknowledgments

This work was supported by the Grant Agency of Czech Republic (P302/12/1885, P302/12/G157, and 13-12317J), by Charles University in Prague (PRVOUK P27/LF1/1 and UNCE 204022), and by OPPK (CZ.2.16/3.1.00/24010).

References

  1. Akamatsu Y, Kobayashi T (2015) The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol Cell Biol 35:1871–1881PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J, Panov KI, Zomerdijk JC, Schultz P, Gadal O (2011) RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol 192:277–293PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) DNA and chromosomes. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) Molecular biology of the cell, 4th edn. Garland Science, New York, pp 191–234Google Scholar
  4. Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–394PubMedCrossRefGoogle Scholar
  5. Anosova I, Melnik S, Tripsianes K, Kateb F, Grummt I, Sattler M (2015) A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucl Acids Res 43:5208–5220PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I, Larsson LG, Wright A (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310PubMedCrossRefGoogle Scholar
  7. Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217PubMedGoogle Scholar
  8. Audas TE, Jacob MD, Lee S (2012a) The nucleolar detention pathway: a cellular strategy for regulating molecular networks. Cell Cycle 11:2059–2062PubMedPubMedCentralCrossRefGoogle Scholar
  9. Audas TE, Jacob MD, Lee S (2012b) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45:147–157PubMedCrossRefGoogle Scholar
  10. Babu KA, Verma RS (1985) Structural and functional aspects of nucleolar organizer regions (NORs) of human chromosomes. Int Rev Cytol 94:151–176PubMedCrossRefGoogle Scholar
  11. Bartholdi MF (1991) Nuclear distribution of centromeres during the cell cycle of human diploid fibroblasts. J Cell Sci 99:255–263PubMedGoogle Scholar
  12. Bartsch I, Schoneberg C, Grummt I (1987) Evolutionary changes of sequences and factors that direct transcription termination of human and mouse ribosomal genes. Mol Cell Biol 7:2521–2529PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098PubMedCrossRefGoogle Scholar
  14. Berger AB, Cabal GG, Fabre E, Duong T, Buc H, Nehrbass U, Olivo-Marin JC, Gadal O, Zimmer C (2008) High-resolution statistical mapping reveals gene territories in live yeast. Nat Methods 5:1031–1037PubMedCrossRefGoogle Scholar
  15. Bergold PJ, Campbell GR, Littau VC, Johnson EM (1983) Sequence and hairpin structure of an inverted repeat series at termini of the Physarum extrachromosomal rDNA molecule. Cell 32:1287–1299PubMedCrossRefGoogle Scholar
  16. Billia F, Deboni U (1991) Localization of centromeric satellite and telomeric DNA sequences in dorsal root ganglion neurons, in vitro. J Cell Sci 100:219–226PubMedGoogle Scholar
  17. Birch JL, Zomerdijk JC (2008) Structure and function of ribosomal RNA gene chromatin. Biochem Soc Trans 36(Pt 4):619–624. doi: 10.1042/BST0360619 PubMedCrossRefGoogle Scholar
  18. Bird AP (1978) A study of early events in ribosomal gene amplification. Cold Spring Harb Symp Quant Biol 42:1179–1183PubMedCrossRefGoogle Scholar
  19. Birnstiel ML, Chipchase M, Speirs J (1971) The ribosomal RNA cistrons. Prog Nucl Acid Res Mol Biol 11:351CrossRefGoogle Scholar
  20. Bolla RI, Braaten DC, Shiomi Y, Hebert MB, Schlessinger D (1985) Localization of specific rDNA spacer sequences to the mouse L-cell nucleolar matrix. Mol Cell Biol 5:1287–1294PubMedPubMedCentralCrossRefGoogle Scholar
  21. Booth DG, Takagi M, Sanchez-Pulido L, Petfalski E, Vargiu G, Samejima K, Imamoto N, Ponting CP, Tollervey D, Earnshaw WC, Vagnarelli P (2014) Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife 27(3):e01641. doi: 10.7554/eLife.01641 Google Scholar
  22. Braga EA, Kapanadze B, Kupriyanova NS, Ivanova GM, Brodyanskii VM, Nechvolodov KK, Skutov GA, Ryskov AP, Nosikov NN, Yankovskii NK (1995) Distribution analysis of 7 microsatellite motifs in cosmids of human chromosome 13 library. Mol Biol 29:584–590Google Scholar
  23. Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643PubMedCrossRefGoogle Scholar
  24. Butler DK, Metzenberg RL (1993) Amplification of the nucleolus organizer region during the sexual phase of Neurospora crassa. Chromosoma 102:519–525PubMedCrossRefGoogle Scholar
  25. Caburet S, Conti C, Schurra Lebofsky CR, Edelstein SJ, Bensimon A (2005) Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15:1079–1085PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carvalho C, Pereira HM, Ferreira J, Pina C, Mendonca D, Rosa AC, Carmo-Fonseca M (2001) Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell 12:3563–3572PubMedPubMedCentralCrossRefGoogle Scholar
  27. Casafont I, Navascues J, Pena E, Lafarga M, Berciano MT (2006) Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5′-fluorouridine into nascent RNA. Neurosci 14:453–462CrossRefGoogle Scholar
  28. Cassidy BG, Yang-Yen HF, Rothblum LI (1986) Transcriptional role for the nontranscribed spacer of rat ribosomal DNA. Mol Cell Biol 6:2766–2773PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cheutin T, O’Donohue MF, Beorchia A, Vandelaer M, Kaplan H, Deféver B, Ploton D, Thiry M (2002) Three-dimensional organization of active rRNA genes within the nucleolus. J Cell Sci 115(Pt 16):3297–3307PubMedGoogle Scholar
  30. Clos J, Normann A, Ohrlein A, Grummt I (1986) The core promoter of mouse rDNA consists of two functionally distinct domains. Nucl Acids Res 14:7581–7595PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cmarko D, Verschure PJ, Rothblum LI, Hernandez-Verdun D, Amalric F, van Driel R, Fakan S (2000) Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181–187PubMedCrossRefGoogle Scholar
  32. Cmarko D, Smigova J, Minichova L, Popov A (2008) Nucleolus: the ribosome factory. Histol Histopathol 23:1291–1298PubMedGoogle Scholar
  33. Comings DE (1980) Arrangement of chromatin in the nucleus. Hum Genet 53:131–143PubMedCrossRefGoogle Scholar
  34. Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761PubMedCrossRefGoogle Scholar
  35. Cong R, Das S, Ugrinova I, Kumar S, Mongelard F, Wong J, Bouvet P (2012) Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription. Nucl Acids Res 40:9441–9454. doi: 10.1093/nar/gks720 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Copenhaver GP, Putnam CD, Denton ML, Pikaard CS (1994) The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucl Acids Res 22:2651–2657PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301PubMedCrossRefGoogle Scholar
  38. Csankovszki G, Nagy A, Jaenisch R (2001) Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153:773–784PubMedPubMedCentralCrossRefGoogle Scholar
  39. De Winter RF, Moss T (1986) The ribosomal spacer in Xenopus laevis is transcribed as part of the primary ribosomal RNA. Nucl Acids Res 14:6041–6051PubMedPubMedCentralCrossRefGoogle Scholar
  40. Denissov S, Lessard F, Mayer C, Stefanovsky V, van Driel M, Grummt I, Moss T, Stunnenberg HG (2011) A model for the topology of active ribosomal RNA genes. EMBO Rep 12:231–237PubMedPubMedCentralCrossRefGoogle Scholar
  41. Derenzini M, Pasquinelli G, O’Donohue MF, Ploton D, Thiry M (2006) Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 54:131–145PubMedCrossRefGoogle Scholar
  42. Derenzini M, Olins AL, Olins DE (2014) Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur J Histochem 58:2307PubMedPubMedCentralCrossRefGoogle Scholar
  43. Diermeier SD, Németh A, Rehli M, Grummt I, Längst G (2013) Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet 9:e1003786. doi: 10.1371/journal.pgen.1003786 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dimitrova DS (2011) DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. J Cell Sci 124:2743–2752PubMedCrossRefGoogle Scholar
  45. Doelling J, Pikaard C (1995) The minimal ribosomal RNA promoter of Arabidopsis thaliana includes a critical element at the transcription initiation site. Plant J 8:683–692PubMedCrossRefGoogle Scholar
  46. Dousset T, Wang C, Verheggen C, Chen D, Hernandez-Verdun D, Huang S (2000) Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol Biol Cell 11:2705–2717PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dumenco VM, Wejksnora PJ (1986) Characterization of the region around the start point of transcription of ribosomal RNA in the Chinese hamster. Gene 46:227–235PubMedCrossRefGoogle Scholar
  48. Edenberg HJ, Huberman JA (1975) Eukaryotic chromosome replication. Annu Rev Genet 9:245–284PubMedCrossRefGoogle Scholar
  49. Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320PubMedCrossRefGoogle Scholar
  50. Erickson JM, Schmickel RD (1985) A molecular basis for discrete size variation in human ribosomal DNA. Am J Hum Genet 37:311–325PubMedPubMedCentralGoogle Scholar
  51. Fedoriw AM, Calabrese JM, Mu W, Yee D, Magnuson T (2012) Differentiation-driven nucleolar association of the mouse imprinted Kcnq1 locus. G3 2(12):1521–1528. doi: 10.1534/g3.112.004226 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B (2013) The shared genomic architecture of human nucleolar organizer regions. Genome Res 23:2003–2012PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gebrane-Younes J, Fomproix N, Hernandez-Verdun D (1997) When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 110:2429–2440PubMedGoogle Scholar
  54. Gencheva M, Anachkova B, Russev G (1996) Mapping the sites of initiation of DNA replication in rat and human rRNA genes. J Biol Chem 271:2608–2614PubMedCrossRefGoogle Scholar
  55. Gerber JK, Gögel E, Berger C, Wallisch M, Müller F, Grummt I, Grummt F (1997) Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90:559–567PubMedCrossRefGoogle Scholar
  56. Gomez-Roman N, Felton-Edkins ZA, Kenneth NS, Goodfellow SJ, Athineos D, Zhang J, Ramsbottom BA, Innes F, Kantidakis T, Kerr ER, Brodie J, Grandori C, White RJ (2006) Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp 73:141–154PubMedCrossRefGoogle Scholar
  57. Gonzalez IL, Sylvester JE (1995) Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27:320–328PubMedCrossRefGoogle Scholar
  58. Gonzalez IL, Sylvester JE (2001) Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics 73:255–263PubMedCrossRefGoogle Scholar
  59. Gonzalez IL, Gorski JL, Campen TJ, Dorney DJ, Erickson JM, Sylvester JE, Schmickel RD (1985) Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci 82:7666–7670PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gonzalez IL, Petersen R, Sylvester JE (1989) Independent insertion of alu elements in the human ribosomal spacer and their concerted evolution. Mol Biol Evol 6:413–423PubMedGoogle Scholar
  61. Gonzalez IL, Chambers C, Gorski JL, Stambolian D, Schmickel RD, Sylvester JE (1990) Sequence and structure correlation of human ribosomal transcribed spacers. J Mol Biol 212:27–35PubMedCrossRefGoogle Scholar
  62. Gonzalez IL, Wu S, Li W-M, Kuo BA, Sylvester JE (1992) Human ribosomal RNA intergenic spacer sequence. Nucl Acids Res 20:5846PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gorski SA, Snyder SK, John S, Grummt I, Misteli T (2008) Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol Cell 30:486–497PubMedPubMedCentralCrossRefGoogle Scholar
  64. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ (2005) c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7:311–318PubMedCrossRefGoogle Scholar
  65. Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA (2005) Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 7:295–302PubMedCrossRefGoogle Scholar
  66. Grob A, Colleran C, McStay B (2014) Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 28:220–230PubMedPubMedCentralCrossRefGoogle Scholar
  67. Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) Transcription of mouse rDNA terminates downstream of the 3″ end of 28S RNA and involves interaction of factors with repeated sequences in the 3″ spacer. Cell 43:801–810PubMedCrossRefGoogle Scholar
  68. Grummt I, Rosenbauer H, Niedermeyer I, Maier U, Ohrlein A (1986) A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45:837–846PubMedCrossRefGoogle Scholar
  69. Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R (2012) Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 45:706–707CrossRefGoogle Scholar
  70. Haaf T, Schmid M (1989) Centromeric association and non-random distribution of centromeres in human tumour cells. Hum Genet 81:137–143PubMedCrossRefGoogle Scholar
  71. Haaf T, Schmid M (1991) Chromosome topology in mammalian interphase nuclei. Exp Cell Res 192:325–332PubMedCrossRefGoogle Scholar
  72. Haaf T, Ward DC (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224:163–173PubMedCrossRefGoogle Scholar
  73. Haaf T, Hayman DL, Schmid M (1991) Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res 193:78–86PubMedCrossRefGoogle Scholar
  74. Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206PubMedPubMedCentralCrossRefGoogle Scholar
  75. Haltiner M, Smale ST, Tjian R (1986) Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis. Mol Cell Biol 6:227–235PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hancock R (2014) The crowded nucleus. Int Rev Cell Mol Biol 307:15–26PubMedCrossRefGoogle Scholar
  77. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318PubMedCrossRefGoogle Scholar
  78. Heitz E (1931) Die Ursache der gesetzmassigen Zahl, Lage, Form und Groesse pflanzlicher Nukleolen. Planta 12:775–844CrossRefGoogle Scholar
  79. Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I (1998) Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 17:7373–7381PubMedPubMedCentralCrossRefGoogle Scholar
  80. Héliot L, Mongelard F, Klein C, O’Donohue MF, Chassery JM, Robert-Nicoud M, Usson Y (2000) Nonrandom distribution of metaphase AgNOR staining patterns on human acrocentric chromosomes. J Histochem Cytochem 48:13–20PubMedCrossRefGoogle Scholar
  81. Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69:3394–3398PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hernández-Hernández A, Soto-Reyes E, Ortiz R, Arriaga-Canon C, Echeverría-Martinez OM, Vázquez-Nin GH, Recillas-Targa F (2012) Changes of the nucleolus architecture in absence of the nuclear factor CTCF. Cytogenet Gen Res 136:89–96CrossRefGoogle Scholar
  83. Hozák P, Schöfer C, Sylvester J, Wachtler F (1993) A study on nucleolar DNA: isolation of DNA from fibrillar components and ultrastructural localization of different DNA probes. J Cell Sci 104:1199–1205PubMedGoogle Scholar
  84. Hu CH, McStay B, Jeong SW, Reeder RH (1994) xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol Cell Biol 14:2871–2882PubMedPubMedCentralCrossRefGoogle Scholar
  85. Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H (2013) Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 288:26067–26077. doi: 10.1074/jbc.M113.486175 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–696PubMedCrossRefGoogle Scholar
  87. Jacob MD, Audas TE, Mullineux ST, Lee S (2012) Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal intergenic spacer. Nucleus 3:315–319PubMedCrossRefGoogle Scholar
  88. Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S (2013) Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell 24:2943–2953. doi: 10.1091/mbc.E13-04-0223 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Jakociunas T, Domange Jordö M, Aït Mebarek M, Bünner CM, Verhein-Hansen J, Oddershede LB, Thon G (2013) Subnuclear relocalization and silencing of a chromosomal region by an ectopic ribosomal DNA repeat. Proc Natl Acad Sci USA 110:E4465–E4473. doi: 10.1073/pnas.1315581110 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234PubMedCrossRefGoogle Scholar
  91. Junera HR, Masson C, Geraud G, Hernandez-Verdun D (1995) The three-dimensional organization of ribosomal genes and the architecture of the nucleoli vary with G1, S and G2 phases. J Cell Sci 108:3427–3441PubMedGoogle Scholar
  92. Kalmárová M, Smirnov E, Mašata M, Koberna K, Ligasová A, Popov A, Raška I (2007) Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli. J Struct Biol 160:49–56PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kalmárová M, Kovácik L, Popov A, Testillano SP, Smirnov E (2008) Asymmetrical distribution of the transcriptionally competent NORs in mitosis. J Struct Biol 163:40–44. doi: 10.1016/j.jsb.2008.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kaplan FS, Murray J, Sylvester JE, Gonzalez IL, O’Connor JP, Doering JL, Muenke M, Emanuel BS, Zasloff MA (1993) The topographic organization of repetitive DNA in the human nucleolus. Genomics 15:123–132PubMedCrossRefGoogle Scholar
  95. Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome–nuclear lamina interactions. Cell 153:178–192PubMedCrossRefGoogle Scholar
  96. Koberna K, Malínský J, Pliss A, Mašata M, Večeřová J, Fialová M, Bednár J, Raška I (2002) Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J Cell Biol 157:743–748PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kominami R, Urano Y, Mishima Y, Muramatsu M (1981) Organization of ribosomal RNA gene repeats of the mouse. Nucl Acids Res 14:3219–3233CrossRefGoogle Scholar
  98. Kuhn A, Normann A, Bartsch I, Grummt I (1988) The mouse ribosomal gene terminator consists of three functionally separable sequence elements. EMBO J 7:1497–1502PubMedPubMedCentralGoogle Scholar
  99. Kupriyanova NS, Netchvolodov KK, Sadova AA, Cherepanova MD, Ryskov AP (2015) Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning. Gene 572:237–242PubMedCrossRefGoogle Scholar
  100. La Volpe A, La Mantia G, Gargiulo G, Malva C (1984) Regulation of rRNA gene number in Drosophila melanogaster: new aspects resulting from the use of free duplications. Mol Gen Genet 194:485–488PubMedCrossRefGoogle Scholar
  101. La Volpe A, Simeone A, Simeone A, D’Esposito M, Scotto L, Fidanza V, de Falco A, Boncinelli E (1985) Molecular analysis of the heterogeneity region of the human ribosomal spacer. J Mol Biol 183:213–223PubMedCrossRefGoogle Scholar
  102. Labhart P, Reeder RH (1986) Characterization of three sites of RNA 3′ end formation in the Xenopus ribosomal gene spacer. Cell 45:431–443PubMedCrossRefGoogle Scholar
  103. Lam YW, Trinkle-Mulcahy L (2015) New insights into nucleolar structure and function. F1000Prime Rep 7:48PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lebofsky R, Bensimon A (2005) DNA replication origin plasticity and perturbed fork progression in human inverted repeats. Mol Cell Biol 25:6789–6797PubMedPubMedCentralCrossRefGoogle Scholar
  105. Léger I, Guillaud M, Krief B, Brugal G (1994) Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli. Cytometry 16:313–323PubMedCrossRefGoogle Scholar
  106. Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI (2004) Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 166:787–800PubMedPubMedCentralCrossRefGoogle Scholar
  107. Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucl Acids Res 15:5323–5338PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lewin B (1980) Gene expression, vol 2. Wiley, New YorkGoogle Scholar
  109. Li Z, Hann SR (2013) Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription. Oncogene 32:1988–1994PubMedCrossRefGoogle Scholar
  110. Li J, Langst G, Grummt I (2006) NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J 25:5735–5741PubMedPubMedCentralCrossRefGoogle Scholar
  111. Linskens MHK, Huberman JA (1988) Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol 8:4927–4935PubMedPubMedCentralCrossRefGoogle Scholar
  112. Little RD, Platt TH, Schildkraut CL (1993) Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol 13:6600–6613PubMedPubMedCentralCrossRefGoogle Scholar
  113. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764PubMedCrossRefGoogle Scholar
  114. Lykke-Andersen S, Mapendano CK, Jensen TH (2011) An ending is a new beginning: transcription termination supports re-initiation. Cell Cycle 10:863–865PubMedCrossRefGoogle Scholar
  115. Maden BE, Dent CL, Farrell TE, Garde J, McCallum FS, Wakeman JA (1987) Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J 246:519–527PubMedPubMedCentralCrossRefGoogle Scholar
  116. Magdalou I, Lopez BS, Pasero P, Lambert SAE (2014) The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 30:154–164PubMedCrossRefGoogle Scholar
  117. Mais C, Wright JE, Prieto JL, Raggett SL, McStay B (2005) UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64PubMedPubMedCentralCrossRefGoogle Scholar
  118. Manuelidis L (1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci 81:3123–3127PubMedPubMedCentralCrossRefGoogle Scholar
  119. Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96:397–410PubMedCrossRefGoogle Scholar
  120. Matera AG, Frey MR, Margelot K, Wolin SL (1995) A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129:1181–1193PubMedCrossRefGoogle Scholar
  121. Matheson TD, Kaufman PD (2015) Grabbing the genome by the NADs. Chromosoma. doi: 10.1007/s00412-015-0527-8 PubMedGoogle Scholar
  122. Mayer C, Schmitz KM, Li J, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22:351–361PubMedCrossRefGoogle Scholar
  123. Mayer C, Neubert M, Grummt I (2008) The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep 9:774–780PubMedPubMedCentralCrossRefGoogle Scholar
  124. McClintock B (1934) The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Zeit Zellforsch Mik Anat 21:294–328CrossRefGoogle Scholar
  125. McKeown PC, Shaw PJ (2009) Chromatin: linking structure and function in the nucleolus. Chromosoma 118:11–23. doi: 10.1007/s00412-008-0184-2 PubMedCrossRefGoogle Scholar
  126. McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157PubMedCrossRefGoogle Scholar
  127. McStay B, Reeder RH (1986) A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter. Cell 47:913–920PubMedCrossRefGoogle Scholar
  128. Melčák I, Risueño MC, Raška I (1996) Ultrastructural non-isotopic mapping of nucleolar transcription sites in onion protoplasts. J Struct Biol 116:253–263PubMedCrossRefGoogle Scholar
  129. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N, van Slegtenhorst M, Wolfe J, Povey S, Beckmann JS, Bensimon A (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277:1518–1523PubMedCrossRefGoogle Scholar
  130. Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114PubMedCrossRefGoogle Scholar
  131. Miller OL Jr, Beatty BR (1969) Visualization of nucleolar genes. Science 164:955–957PubMedCrossRefGoogle Scholar
  132. Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, Kanduri C (2008) Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 28:3713–3728. doi: 10.1128/MCB.02263-07 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Moss T, Stefanovsky VY (1995) Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. In: Cohn WE, Moldave K (eds) Progress in nucleic acids and molecular biology. Academic Press, San Diego, pp 25–66Google Scholar
  134. Moss T, Mitchelson K, De Winter RFJ (1985) The promotion of ribosomal transcription in eukaryotes. Oxf Surv Eukaryot Genes 2:207–250PubMedGoogle Scholar
  135. Moss T, Stefanovsky V, Langlois F, Gagnon-Kugler T (2006) A new paradigm for the regulation of the mammalian ribosomal RNA genes. Biochem Soc Trans 34:1079–1081PubMedCrossRefGoogle Scholar
  136. Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49PubMedCrossRefGoogle Scholar
  137. Mougey EB, O’Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619PubMedCrossRefGoogle Scholar
  138. Mroczka DL, Cassidy B, Busch H, Rothblum LI (1984) Characterization of rat ribosomal DNA: the highly repetitive sequences that flank the ribosomal RNA transcription unit are homologous and contain RNA polymerase III transcription initiation sites. J Mol Biol 174:141PubMedCrossRefGoogle Scholar
  139. Müller WG, Rieder D, Karpova TS, John S, Trajanoski Z, McNally JG (2007) Organization of chromatin and histone modifications at a transcription site. J Cell Biol 177:957–967PubMedPubMedCentralCrossRefGoogle Scholar
  140. Murano K, Okuwaki M, Hisaoka M, Nagata K (2008) Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 28:3114–3126PubMedPubMedCentralCrossRefGoogle Scholar
  141. Nazar RN (2004) Ribosomal processing and ribosome biogenesis in eukaryotes. IUBMB Life 56:457–465PubMedCrossRefGoogle Scholar
  142. Németh A, Längst G (2008) Chromatin organization of active ribosomal RNA genes. Epigenetics 3:243–245PubMedCrossRefGoogle Scholar
  143. Németh A, Längst G (2011) Genome organization in and around the nucleolus. Trends Genet 27:149–156PubMedCrossRefGoogle Scholar
  144. Németh A, Guibert S, Tiwari VK, Ohlsson R, Langst G (2008) Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes. EMBO J 27:1255–1265PubMedPubMedCentralCrossRefGoogle Scholar
  145. Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, Längst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889. doi: 10.1371/journal.pgen.1000889 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Németh A, Perez-Fernandez J, Merkl P, Hamperl S, Gerber J, Griesenbeck J, Tscochner H (2013) RNA polymerase I termination: Where is the end? Biochem Biophys Acta 1829:306–317PubMedGoogle Scholar
  147. O’Sullivan AC, Sullivan GJ, McStay B (2002) UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 22:657–668PubMedPubMedCentralCrossRefGoogle Scholar
  148. Ochs RL, Press RI (1992) Centromere autoantigens are associated with the nucleolus. Exp Cell Res 200:339–350PubMedCrossRefGoogle Scholar
  149. Ochs RL, Lischwe MA, Spohn WH, Busch H (1985) Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123–133PubMedCrossRefGoogle Scholar
  150. O’Keefe RT, Henderson SC, Spector DL (1992) Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific α-satellite DNA sequences. J Cell Biol 116:1095–1110PubMedCrossRefGoogle Scholar
  151. O’Sullivan JM, Sontam DM, Grierson R, Jones B (2009) Repeated elements coordinate the spatial organization of the yeast genome. Yeast 26:125–138PubMedCrossRefGoogle Scholar
  152. Padeken J, Heun P (2014) Nucleolus and nuclear periphery: velcro for heterochromatin. Curr Opin Cell Biol 28:54–60PubMedCrossRefGoogle Scholar
  153. Padeken J, Mendiburo MJ, Chlamydas S, Schwarz HJ, Kremmer E, Heun P (2013) The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol Cell 25(50):236–249. doi: 10.1016/j.molcel.2013.03.002 CrossRefGoogle Scholar
  154. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246PubMedCrossRefGoogle Scholar
  155. Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16:2479–2484PubMedPubMedCentralCrossRefGoogle Scholar
  156. Paule M (1994) Transcription of ribosomal RNA by eukaryotic RNA polymerase I. In: Conaway RC, Conaway JW (eds) Transcription: mechanisms and regulation. Raven Press, New York, pp 83–106Google Scholar
  157. Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35PubMedPubMedCentralCrossRefGoogle Scholar
  158. Pfleiderer C, Smid A, Bartsch I, Grummt I (1990) An undecamer DNA sequence directs termination of human ribosomal gene transcription. Nucl Acids Res 18:4727–4736PubMedPubMedCentralCrossRefGoogle Scholar
  159. Philippsen P, Kramer RA, Davis RW (1978) Cloning of the yeast ribosomal DNA repeat unit in SstI and HindIII lambda vectors using genetic and physical size selections. J Mol Biol 123:371–386PubMedCrossRefGoogle Scholar
  160. Pikaard CS, Pape LK, Henderson SL, Ryan K, Paalman MH, Lopata MA, Reeder RH, Sollner-Webb B (1990) Enhancers for RNA polymerase I in mouse ribosomal DNA. Mol Cell Biol 10:4816–4825PubMedPubMedCentralCrossRefGoogle Scholar
  161. Pliss A, Koberna K, Vecerova J, Malinsky J, Masata M, Fialova M, Raska I, Berezney R (2005) Spatio-temporal dynamics at rDNA foci: global switching between DNA replication and transcription. J Cell Biochem 94:554–565PubMedCrossRefGoogle Scholar
  162. Pliss A, Fritz AJ, Stojkovic B, Ding H, Mukherjee L, Bhattacharya S, Xu J, Berezney R (2015) Non-random patterns in the distribution of NOR-bearing chromosome territories in human fibroblasts: a network model of interactions. J Cell Physiol 230:427–439PubMedCrossRefGoogle Scholar
  163. Pontvianne F, Blevins T, Chandrasekhara C, Mozgova I, Hassel C, Pontes OM, Tucker S, Mokros P, Muchova V, Fajkus J et al (2013) Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev 27:1545–1550PubMedPubMedCentralCrossRefGoogle Scholar
  164. Prieto JL, McStay B (2005) Nucleolar biogenesis: the first small steps. Biochem Soc Trans 33:1441–1443PubMedCrossRefGoogle Scholar
  165. Prieto JL, McStay B (2007) Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21:2041–2054PubMedPubMedCentralCrossRefGoogle Scholar
  166. Prieto JL, McStay B (2008) Pseudo-NORs: a novel model for studying nucleoli. Biochim Biophys Acta 1783:2116–2123PubMedCrossRefGoogle Scholar
  167. Puvion-Dutilleul F, Bachellerie JP, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409PubMedCrossRefGoogle Scholar
  168. Rahmanzadeh R, Hüttmann G, Gerdes J, Scholzen T (2007) Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis. Cell Prolif 40:422–430PubMedCrossRefGoogle Scholar
  169. Raska I (2003) Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends Cell Biol 13:517–525PubMedCrossRefGoogle Scholar
  170. Raska I, Reimer G, Jarnik M, Kostrouch Z, Raska K Jr (1989) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centers or dense fibrillar components. Biol Cell 65(1):79–82PubMedCrossRefGoogle Scholar
  171. Raska I, Shaw PJ, Cmarko D (2006a) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235PubMedCrossRefGoogle Scholar
  172. Raska I, Shaw PJ, Cmarko D (2006b) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 18:325–334PubMedCrossRefGoogle Scholar
  173. Raška I, Rychter Z, Smetana K (1983a) Fibrillar centers and condensed nucleolar chromatin in resting and stimulated human lymphocytes. Zeitschrift fur mikroskopischanatomische Forschung 97(1):15–32Google Scholar
  174. Raška I, Armbruster BL, Frey JR, Smetana K (1983b) Analysis of ring-shaped nucleoli in serially sectioned human lymphocytes. Cell Tissue Res 234(3):707–711PubMedCrossRefGoogle Scholar
  175. Raška I, Dundr M, Koberna K, Melčák I, Risueño MM, Török I (1995) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centres or dense fibrillar components? A critical appraisal. J Struct Biol 114:1–22PubMedCrossRefGoogle Scholar
  176. Rawlins DJ, Shaw PJ (1990) Localization of ribosomal and telomeric DNA sequences in intact plant nuclei by in situ hybridization and three-dimensional optical microscopy. J Microsc 157:83–89PubMedCrossRefGoogle Scholar
  177. Reeder R (1992) Regulation of transcription by RNA polymerase I. In: McKnight SL, Yamamoto KR (eds) Transcriptional regulation. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, pp 315–347Google Scholar
  178. Reeder RH, Lang WH (1997) Terminating transcription in eukaryotes: lessons learned from RNA polymerase I. Trends Biochem Sci 22:473–477PubMedCrossRefGoogle Scholar
  179. Reeder RH, Brown DD, Wellauer PK, Dawid IB (1976) Patterns of ribosomal DNA spacer lengths are inherited. J Mol Biol 105:507–516PubMedCrossRefGoogle Scholar
  180. Rickards B, Flint SJ, Cole MD, LeRoy G (2007) Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol 27:937–948PubMedPubMedCentralCrossRefGoogle Scholar
  181. Roger B, Moisand A, Amalric F, Bouvet P (2003) Nucleolin provides a link between RNA polymerase I transcription and pre-ribosome assembly. Chromosoma 111:399–407PubMedCrossRefGoogle Scholar
  182. Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509PubMedCrossRefGoogle Scholar
  183. Rothstein R, Michel B, Gangloff S (2000) Replication fork pausing and recombination or “gimme a break”. Genes Dev 14:1–10PubMedGoogle Scholar
  184. Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214:465–472PubMedCrossRefGoogle Scholar
  185. Roussel P, Andre C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246PubMedCrossRefGoogle Scholar
  186. Ryskov AP, Kupriianova NS, Kapanadze BI, Nechvolodov KK, Pozmogova GE, Prosniak MI, Iankovskiĭ NK (1993) Frequency of various mini- and micro-satellite sequences in DNA of human chromosome 13. Genetika 29:1750–1754PubMedGoogle Scholar
  187. Santoro R (2005) The silence of the ribosomal RNA genes. Cell Mol Life Sci 62:2067–2079PubMedCrossRefGoogle Scholar
  188. Santoro R (2014) Analysis of chromatin composition of repetitive sequences: the ChIP-Chop assay. Methods Mol Biol 1094:319–328PubMedCrossRefGoogle Scholar
  189. Santoro R, De Lucia F (2005) Many players, one goal: how chromatin states are inherited during cell division. Biochem Cell Biol 83:332–343PubMedCrossRefGoogle Scholar
  190. Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396PubMedCrossRefGoogle Scholar
  191. Santoro R, Schmitz KM, Sandoval J, Grummt I (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11:52–58PubMedPubMedCentralCrossRefGoogle Scholar
  192. Sasaki T, Okazaki T, Muramatsu M, Kominami R (1987) Variation among mouse ribosomal RNA genes within and between chromosomes. Mol Biol Evol 4:594–601PubMedGoogle Scholar
  193. Savino TM, Gebrane-Younes J, De Mey J, Sibarita JB, Hernandez-Verdun D (2001) Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol 153:1097–1110PubMedPubMedCentralCrossRefGoogle Scholar
  194. Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Review. Bioessays 12:14–21PubMedCrossRefGoogle Scholar
  195. Scheer U, Zentgraf H (1982) Morphology of nucleolar chromatin in electron microscopic spread preparations. In: Busch Rothblum (ed) The cell nucleus. Academic Press, New York, p 143Google Scholar
  196. Scheer U, Xia B, Merkert H, Weisenberger D (1997) Looking at Christmas trees in the nucleolus. Chromosoma 105:470–480PubMedCrossRefGoogle Scholar
  197. Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269PubMedPubMedCentralCrossRefGoogle Scholar
  198. Scott RS, Truong KY, Vos JM (1997) Replication initiation and elongation fork rates within a differentially expressed human multicopy locus in early S phase. Nucl Acids Res 25:4505–4512PubMedPubMedCentralCrossRefGoogle Scholar
  199. Shaw PJ, McKeown PC (2011) The structure of rDNA chromatin. In: Olson MOJ (ed) The nucleolus, protein reviews, vol 15. Springer, New York, pp 43–55Google Scholar
  200. Shiue CN, Berkson RG, Wright AP (2009) c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28:1833–1842PubMedCrossRefGoogle Scholar
  201. Shiue CN, Nematollahi-Mahani A, Wright AP (2014) Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture. Nucl Acids Res 42:5505–5517PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sirri V, Roussel P, Hernandez-Verdun D (1999) The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 112:3259–3268PubMedGoogle Scholar
  203. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus: the fascinating nuclear body. Histochem Cell Biol 129:13–31PubMedPubMedCentralCrossRefGoogle Scholar
  204. Smetana K, Klamová H, Mikulenková D, Pluskalová M, Hrkal Z (2006) On the nucleolar size and density in human early granulocytic progenitors, myeloblasts. Eur J Histochem 50:119–124PubMedGoogle Scholar
  205. Smirnov E, Kalmárová M, Koberna K, Zemanová Z, Malínský J, Masata M, Cvacková Z, Michalová K, Raska I (2006) NORs and their transcription competence during the cell cycle. Folia Biol (Praha) 52(3):59–70Google Scholar
  206. Smirnov E, Borkovec J, Kováčik L, Svidenská S, Schröfel A, Skalníková M, Švindrych Z, Křížek P, Ovesný M, Hagen GM, Juda P, Michalová K, Cardoso MC, Cmarko D, Raška I (2014) Separation of replication and transcription domains in nucleoli. J Struct Biol 188:259–266. doi: 10.1016/j.jsb.2014.10.001 PubMedCrossRefGoogle Scholar
  207. Stahl A, Hartung M, Vagner-Capodano AM, Fouet C (1976) Chromosomal constitution of nucleolus-associated chromatin in man. Hum Genet 35:27–34PubMedCrossRefGoogle Scholar
  208. Strohner R, Nemeth A, Nemeth A, Jansa P et al (2001) NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20:4892–4900PubMedPubMedCentralCrossRefGoogle Scholar
  209. Stults DM, Killen MW, Pierce HH, Pierce AJ (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18:13–18PubMedPubMedCentralCrossRefGoogle Scholar
  210. Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ (2009) Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 69:9096–9104PubMedCrossRefGoogle Scholar
  211. Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2874PubMedPubMedCentralCrossRefGoogle Scholar
  212. Sylvester JE, Whiteman DA, Podolsky R, Pozsgay JM, Respess J, Schmickel RD (1986) The human ribosomal RNA genes: structure and organization of the complete repeating unit. Hum Genet 73:193–198PubMedCrossRefGoogle Scholar
  213. Sylvester JE, Petersen R, Schmickel RD (1989) Human ribosomal DNA: novel sequence organization in a 4.5-kb region upstream from the promoter. Gene 84:193–196PubMedCrossRefGoogle Scholar
  214. Sylvester JE, Gonzalez IL, Mougey EB (2003) In: Olson M (ed) The nucleolus. Landes Bioscience, Georgetown, pp 58–73Google Scholar
  215. Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA in Drosophila melanogaster does not terminate at any fixed point. EMBO J 6:1267–1273Google Scholar
  216. Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656PubMedCrossRefGoogle Scholar
  217. Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401PubMedPubMedCentralCrossRefGoogle Scholar
  218. Torrano V, Navascues J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, Leon J, Berciano MT, Renkawitz R et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly (ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119:1746–1759PubMedCrossRefGoogle Scholar
  219. Tower J, Henderson SL, Dougherty KM, Wejksnora PJ, Sollner-Webb B (1989) An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements. Mol Cell Biol 9:1513PubMedPubMedCentralCrossRefGoogle Scholar
  220. Trendelenburg MF, Puvion-Dutilleul F (1987) Visualizing active genes. In: Sommerville A, Scheer U (eds) Electron microscopy in molecular biology: a practical approach. IRL Press, Oxford, pp 101–146Google Scholar
  221. Trendelenburg MF, Spring H, Scheer U, Franke WW (1974) Morphology of nucleolar cistrons in a plant cell, Acetabularia mediterranea. Proc Natl Acad Sci USA 71:3626–3630PubMedPubMedCentralCrossRefGoogle Scholar
  222. Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM (2008) Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS One 3:e1843. doi: 10.1371/journal.pone.0001843 PubMedPubMedCentralCrossRefGoogle Scholar
  223. Valentin G (1836) Repertorium für anatomie und physiologie. Verlag von Veit und Comp Berlin 1:1–293Google Scholar
  224. Valenzuela L, Kamakaka RT (2006) Chromatin insulators. Annu Rev Genet 40:107–138PubMedCrossRefGoogle Scholar
  225. van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V et al (2010) CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenet Chromat 3:17CrossRefGoogle Scholar
  226. van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748PubMedPubMedCentralCrossRefGoogle Scholar
  227. Voit R, Seiler J, Grummt I (2015) Cooperative action of Cdk1/cyclin B and SIRT1 is required for mitotic repression of rRNA synthesis. PLoS Genet 11:e1005246. doi: 10.1371/journal.pgen.1005246 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Vourc’h C, Taruscio D, Boyle AL, Ward DC (1993) Cell-cycle-dependent distribution of telomeres, centromeres and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res 205:142–151PubMedCrossRefGoogle Scholar
  229. Wagner R (1835) Einige Bemerkungen und Fragen über das keimbläschen (vesicular germinativa). Müller’s Archiv Anat Physiol Wissenschaft Med 373–377Google Scholar
  230. Weisenberger D, Scheer UA (1995) A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J Cell Biol 129:561–575PubMedCrossRefGoogle Scholar
  231. Wellauer PK, Dawid IB (1977) The structural organization of rDNA in Drosophila melanogaster. Cell 10:193–212PubMedCrossRefGoogle Scholar
  232. Wild MA, Gall JG (1979) An intervening sequence in the gene coding for 25S ribosomal RNA of Tetrahymena pigmentosa. Cell 16:565–573PubMedCrossRefGoogle Scholar
  233. Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KHA (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160PubMedPubMedCentralCrossRefGoogle Scholar
  234. Xie W, Ling T, Zhou Y, Feng W, Zhu Q et al (2012) The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc Natl Acad Sci 109:8161–8166PubMedPubMedCentralCrossRefGoogle Scholar
  235. Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20:614–622PubMedPubMedCentralCrossRefGoogle Scholar
  236. Yang F, Deng X, Ma W et al (2015) The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol 16:52PubMedPubMedCentralCrossRefGoogle Scholar
  237. Yoon Y, Sanches A, Brun C, Huberman JA (1995) Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol Cell Biol 15:2482–2489PubMedPubMedCentralCrossRefGoogle Scholar
  238. Yuan X, Feng W, Imhof A, Grummt I, Zhou Y (2007) Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol Cell 27:585–595PubMedCrossRefGoogle Scholar
  239. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13:291–298PubMedCrossRefGoogle Scholar
  240. Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucl Acids Res 39:4949–4960PubMedPubMedCentralCrossRefGoogle Scholar
  241. Zentner GE, Balow SA, Scacheri PC (2014) Genomic characterization of the mouse ribosomal DNA locus. G3 4:243–254. doi: 10.1534/g3.113.009290 PubMedPubMedCentralCrossRefGoogle Scholar
  242. Zhang S, Hemmerich P, Grosse F (2004) Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2). J Cell Sci 117:3935–3945PubMedCrossRefGoogle Scholar
  243. Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:693–706PubMedCrossRefGoogle Scholar
  244. Zhou Y, Grummt I (2005) The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15:1434–1438PubMedCrossRefGoogle Scholar
  245. Zillner K, Filarsky M, Rachow K, Weinberger M, Längst G, Németh A (2013) Large-scale organization of ribosomal DNA chromatin is regulated by Tip5. Nucl Acids Res 41:5251–5262. doi: 10.1093/nar/gkt218 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Zillner K, Komatsu J, Filarsky K, Kalepu R, Bensimon A, Németh A (2015) Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics 7:363–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. Smirnov
    • 1
    Email author
  • D. Cmarko
    • 1
  • T. Mazel
    • 1
  • M. Hornáček
    • 1
  • I. Raška
    • 1
  1. 1.First Faculty of MedicineCharles University in PraguePragueCzech Republic

Personalised recommendations