Advertisement

Histochemistry and Cell Biology

, Volume 144, Issue 5, pp 491–507 | Cite as

Impaired extracellular matrix structure resulting from malnutrition in ovariectomized mature rats

  • Thaqif El Khassawna
  • Wolfgang Böcker
  • Katharina Brodsky
  • David Weisweiler
  • Parameswari Govindarajan
  • Marian Kampschulte
  • Ulrich Thormann
  • Anja Henss
  • Marcus Rohnke
  • Natali Bauer
  • Robert Müller
  • Andreas Deutsch
  • Anita Ignatius
  • Lutz Dürselen
  • Alexander Langheinrich
  • Katrin S. Lips
  • Reinhard Schnettler
  • Christian HeissEmail author
Original Paper

Abstract

Bone loss is a symptom related to disease and age, which reflects on bone cells and ECM. Discrepant regulation affects cell proliferation and ECM localization. Rat model of osteoporosis (OVX) was investigated against control rats (Sham) at young and old ages. Biophysical, histological and molecular techniques were implemented to examine the underlying cellular and extracellular matrix changes and to assess the mechanisms contributing to bone loss in the context of aging and the widely used osteoporotic models in rats. Bone loss exhibited a compromised function of bone cells and infiltration of adipocytes into bone marrow. However, the expression of genes regulating collagen catabolic process and adipogenesis was chronologically shifted in diseased bone in comparison with aged bone. The data showed the involvement of Wnt signaling inhibition in adipogenesis and bone loss due to over-expression of SOST in both diseased and aged bone. Further, in the OVX animals, an integrin-mediated ERK activation indicated the role of MAPK in osteoblastogenesis and adipogenesis. The increased PTH levels due to calcium and estrogen deficiency activated osteoblastogenesis. Thusly, RANKL-mediated osteoclastogenesis was initiated. Interestingly, the data show the role of MEPE regulating osteoclast-mediated resorption at late stages in osteoporotic bone. The interplay between ECM and bone cells change tissue microstructure and properties. The involvement of Wnt and MAPK pathways in activating cell proliferation has intriguing similarities to oncogenesis and myeloma. The study indicates the importance of targeting both pathways simultaneously to remedy metabolic bone diseases and age-related bone loss.

Keywords

Osteoporosis Rat model Malnutrition Extracellular matrix ToF-SIMS Modeling Osteocytes 

Notes

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) within the SFB/Transregio 79. The authors would like to thank Annette Stengel and Gunhild Martels at Justus-Liebig University of Giessen for their technical assistance.

Compliance with ethical standards

Conflict of interest

Thaqif El Khassawna, Wolfgang Boecker, Katharina Brodsky, David Weisweiler, Parameswari Govindarajan, Marian Kampschulte, Katrin S. Lips, Ulrich Thormann, Marcus Rohnke, Anja Henss, Robert Mueller, Andreas Deutsch, Lutz Duerselen, Anita Ignatius, Alexander Langheinrich, Reinhard Schnettler and Christian Heiss declare that they have no conflict of interest.

Supplementary material

418_2015_1356_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1640 kb)

References

  1. Aigner T, Zien A, Gehrsitz A, Gebhard PM, McKenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44(12):2777–2789CrossRefPubMedGoogle Scholar
  2. Arlot-Bonnemains Y, Fouchereau-Peron M, Moukhtar MS, Benson AA, Milhaud G (1985) Calcium-regulating hormones modulate carbonic anhydrase II in the human erythrocyte. Proc Natl Acad Sci USA 82(24):8832–8834PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bae JW, Takahashi I, Sasano Y, Onodera K, Mitani H, Kagayama M, Mitani H (2003) Age-related changes in gene expression patterns of matrix metalloproteinases and their collagenous substrates in mandibular condylar cartilage in rats. J Anat 203(2):235–241PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bost F, Aouadi M, Caron L, Binetruy B (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87(1):51–56. doi: 10.1016/j.biochi.2004.10.018 CrossRefPubMedGoogle Scholar
  5. Chen CC, Liu MH, Wang MF, Chen CC (2007) Effects of aging and dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized SAMP8 mice. Chin J Physiol 50(6):308–314PubMedGoogle Scholar
  6. Costa GP, Leite DS, do Prado RF, Silveira VA, Carvalho YR (2011) Effect of low-calcium diet and grind diet on bone turnover of ovariectomized female rats. Med Oral Patol Oral Cir Bucal 16(4):e497–e502CrossRefPubMedGoogle Scholar
  7. Dallas SL, Bonewald LF (2010) Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 1192:437–443. doi: 10.1111/j.1749-6632.2009.05246.x PubMedCentralCrossRefPubMedGoogle Scholar
  8. Duque G, Watanabe K (2011) Osteoporosis research: animal models. Springer, New YorkCrossRefGoogle Scholar
  9. El Khassawna T, Bocker W, Govindarajan P, Schliefke N, Hurter B, Kampschulte M, Schlewitz G, Alt V, Lips KS, Faulenbach M, Mollmann H, Zahner D, Durselen L, Ignatius A, Bauer N, Wenisch S, Langheinrich AC, Schnettler R, Heiss C (2013) Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat. PLoS ONE 8(8):e71665. doi: 10.1371/journal.pone.0071665 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Elders PJ, Netelenbos JC, Lips P, van Ginkel FC, Khoe E, Leeuwenkamp OR, Hackeng WH, van der Stelt PF (1991) Calcium supplementation reduces vertebral bone loss in perimenopausal women: a controlled trial in 248 women between 46 and 55 years of age. J Clin Endocrinol Metab 73(3):533–540. doi: 10.1210/jcem-73-3-533 CrossRefPubMedGoogle Scholar
  11. Feng X, McDonald JM (2011) Disorders of bone remodeling. Ann Rev Pathol 6:121–145. doi: 10.1146/annurev-pathol-011110-130203 CrossRefGoogle Scholar
  12. Francisco JI, Yu Y, Oliver RA, Walsh WR (2011) Relationship between age, skeletal site, and time post-ovariectomy on bone mineral and trabecular microarchitecture in rats. J Orthop Res 29(2):189–196. doi: 10.1002/jor.21217 CrossRefPubMedGoogle Scholar
  13. Funicello M, Novelli M, Ragni M, Vottari T, Cocuzza C, Soriano-Lopez J, Chiellini C, Boschi F, Marzola P, Masiello P, Saftig P, Santini F, St-Jacques R, Desmarais S, Morin N, Mancini J, Percival MD, Pinchera A, Maffei M (2007) Cathepsin K null mice show reduced adiposity during the rapid accumulation of fat stores. PLoS ONE 2(8):e683. doi: 10.1371/journal.pone.0000683 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Gerstenfeld LC, Wronski TJ, Hollinger JO, Einhorn TA (2005) Application of histomorphometric methods to the study of bone repair. J Bone Miner Res 20(10):1715–1722CrossRefPubMedGoogle Scholar
  15. Green J, Schotland S, Stauber DJ, Kleeman CR, Clemens TL (1995) Cell-matrix interaction in bone: type I collagen modulates signal transduction in osteoblast-like cells. Am J Physiol 268(5 Pt 1):C1090–C1103PubMedGoogle Scholar
  16. Guo D, Bonewald LF (2009) Advancing our understanding of osteocyte cell biology. Ther Adv Musculoskelet Dis 1(2):87–96. doi: 10.1177/1759720X09341484 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Henss A, Rohnke M, El Khassawna T, Govindarajan P, Schlewitz G, Heiss C, Janek J (2013) Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. J R Soc Interface 10(86):20130332. doi: 10.1098/rsif.2013.0332 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hercz G (2001) Regulation of bone remodeling: impact of novel therapies. Semin Dial 14(1):55–60CrossRefPubMedGoogle Scholar
  19. Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst R, Wu W, Chrysovergis K, Yamada S, Birkedal-Hansen H, Poole AR (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118(1):147–156CrossRefPubMedGoogle Scholar
  20. Jahani M, Genever PG, Patton RJ, Ahwal F, Fagan MJ (2012) The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: a computer simulation. J Biomech 45(16):2876–2883. doi: 10.1016/j.jbiomech.2012.08.005 CrossRefPubMedGoogle Scholar
  21. Kamiya N, Shigemasa K, Takagi M (2001) Gene expression and immunohistochemical localization of decorin and biglycan in association with early bone formation in the developing mandible. J Oral Sci 43(3):179–188CrossRefPubMedGoogle Scholar
  22. Kenner GH, Hendricks L, Gimenez G, Barb W, Park JB (1982) Bone embedding technique with inhibited PMMA monomer. Stain Technol 57(2):121–126PubMedGoogle Scholar
  23. Keophiphath M, Achard V, Henegar C, Rouault C, Clement K, Lacasa D (2009) Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 23(1):11–24. doi: 10.1210/me.2008-0183 CrossRefPubMedGoogle Scholar
  24. Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 34(4):1015–1030, xi. doi: 10.1016/j.ecl.2005.07.009
  25. Kiviranta R, Morko J, Alatalo SL, NicAmhlaoibh R, Risteli J, Laitala-Leinonen T, Vuorio E (2005) Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Bone 36(1):159–172. doi: 10.1016/j.bone.2004.09.020 CrossRefPubMedGoogle Scholar
  26. Kogawa M, Wijenayaka AR, Ormsby RT, Thomas GP, Anderson PH, Bonewald LF, Findlay DM, Atkins GJ (2013) Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J Bone Miner Res 28(12):2436–2448. doi: 10.1002/jbmr.2003 CrossRefPubMedGoogle Scholar
  27. Kulkarni RN, Bakker AD, Everts V, Klein-Nulend J (2010) Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif Tissue Int 87(5):461–468. doi: 10.1007/s00223-010-9407-7 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lillie RD (1965) Histopathologic technic and practical histochemistry. Blakiston Division, New YorkGoogle Scholar
  29. Liu PY, Lu Y, Long JR, Xu FH, Shen H, Recker RR, Deng HW (2004) Common variants at the PCOL2 and Sp1 binding sites of the COL1A1 gene and their interactive effect influence bone mineral density in Caucasians. J Med Genet 41(10):752–757. doi: 10.1136/jmg.2004.019851 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Lyritis GP, Georgoulas T, Zafeiris CP (2010) Bone anabolic versus bone anticatabolic treatment of postmenopausal osteoporosis. Ann N Y Acad Sci 1205:277–283. doi: 10.1111/j.1749-6632.2010.05666.x CrossRefPubMedGoogle Scholar
  31. Mayahara K, Yamaguchi A, Takenouchi H, Kariya T, Taguchi H, Shimizu N (2012) Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE(2). Arch Oral Biol 57(10):1377–1384. doi: 10.1016/j.archoralbio.2012.07.009 CrossRefPubMedGoogle Scholar
  32. Melhus G, Solberg LB, Dimmen S, Madsen JE, Nordsletten L, Reinholt FP (2007) Experimental osteoporosis induced by ovariectomy and vitamin D deficiency does not markedly affect fracture healing in rats. Acta Orthop 78(3):393–403. doi: 10.1080/17453670710013988 CrossRefPubMedGoogle Scholar
  33. Müller R, Kampschulte M, El Khassawna T, Schlewitz G, Hürter B, Böcker W, Bobeth M, Langheinrich AC, Heiss C, Deutsch A (2014) Change of mechanical vertebrae properties due to progressive osteoporosis: combined biomechanical and finite-element analysis within a rat model. Med Biol Eng Comput 52(4):405–414CrossRefPubMedGoogle Scholar
  34. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17(10):1231–1234CrossRefPubMedGoogle Scholar
  35. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610. doi: 10.1002/jbmr.5650020617 CrossRefPubMedGoogle Scholar
  36. Reddy PN, Lakshmana M, Udupa UV (2003) Effect of Praval bhasma (Coral calx), a natural source of rich calcium on bone mineralization in rats. Pharmacol Res 48(6):593–599CrossRefPubMedGoogle Scholar
  37. Robey PG, Boskey AL (2008) The composition of bone. Primer Metab Bone Dis Disord Miner Metab 7:32–38CrossRefGoogle Scholar
  38. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289(5481):950–953CrossRefPubMedGoogle Scholar
  39. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066. doi: 10.1101/cshperspect.a005066 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Semenov MV, He X (2006) LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 281(50):38276–38284CrossRefPubMedGoogle Scholar
  41. Silbermann R, Roodman GD (2013) Myeloma bone disease: pathophysiology and management. J Bone Oncol 2(2):59–69CrossRefGoogle Scholar
  42. Sims NA, Morris HA, Moore RJ, Durbridge TC (1996) Increased bone resorption precedes increased bone formation in the ovariectomized rat. Calcif Tissue Int 59(2):121–127CrossRefPubMedGoogle Scholar
  43. Stemper BD, Board D, Yoganandan N, Wolfla CE (2010) Biomechanical properties of human thoracic spine disc segments. J Craniovertebr Junction Spine 1(1):18–22. doi: 10.4103/0974-8237.65477 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Tanaka Y, Nakayamada S, Okada Y (2005) Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy 4(3):325–328CrossRefPubMedGoogle Scholar
  45. Tanaka-Kamioka K, Kamioka H, Ris H, Lim S-S (1998) Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res 13(10):1555–1568. doi: 10.1359/jbmr.1998.13.10.1555 CrossRefPubMedGoogle Scholar
  46. Tanck E, Homminga J, van Lenthe GH, Huiskes R (2001) Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone 28(6):650–654CrossRefPubMedGoogle Scholar
  47. Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA Guidelines and animal models for osteoporosis. Bone 17(4 Suppl):125S–133SPubMedGoogle Scholar
  48. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43(3):452–458. doi: 10.1016/j.bone.2008.01.030 CrossRefPubMedGoogle Scholar
  49. Vincent A, Riggs BL, Atkinson EJ, Oberg AL, Khosla S (2003) Effect of estrogen replacement therapy on parathyroid hormone secretion in elderly postmenopausal women. Menopause 10(2):165–171CrossRefPubMedGoogle Scholar
  50. Wang X, Harimoto K, Xie S, Cheng H, Liu J, Wang Z (2010) Matrix protein biglycan induces osteoblast differentiation through extracellular signal-regulated kinase and Smad pathways. Biol Pharm Bull 33(11):1891–1897CrossRefPubMedGoogle Scholar
  51. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360CrossRefPubMedGoogle Scholar
  52. Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11(5):R53. doi: 10.1186/gb-2010-11-5-r53 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Yan Y-X, Gong Y-W, Guo Y, Lv Q, Guo C, Zhuang Y, Zhang Y, Li R, Zhang X-z (2012) Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation. PLoS ONE 7(4):e35709. doi: 10.1371/journal.pone.0035709 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Zhao L, Shim JW, Dodge TR, Robling AG, Yokota H (2013) Inactivation of Lrp5 in osteocytes reduces young’s modulus and responsiveness to the mechanical loading. Bone 54(1):35–43. doi: 10.1016/j.bone.2013.01.033 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thaqif El Khassawna
    • 1
  • Wolfgang Böcker
    • 1
    • 2
  • Katharina Brodsky
    • 1
  • David Weisweiler
    • 2
  • Parameswari Govindarajan
    • 1
  • Marian Kampschulte
    • 3
  • Ulrich Thormann
    • 2
  • Anja Henss
    • 4
  • Marcus Rohnke
    • 4
  • Natali Bauer
    • 5
  • Robert Müller
    • 6
  • Andreas Deutsch
    • 6
  • Anita Ignatius
    • 7
  • Lutz Dürselen
    • 7
  • Alexander Langheinrich
    • 8
  • Katrin S. Lips
    • 1
  • Reinhard Schnettler
    • 1
    • 2
  • Christian Heiss
    • 1
    • 2
    Email author
  1. 1.Laboratory of Experimental Trauma SurgeryJustus-Liebig UniversityGiessenGermany
  2. 2.Department of Trauma SurgeryUniversity Hospital of Giessen-MarburgGiessenGermany
  3. 3.Department of RadiologyUniversity Hospital of Giessen-MarburgGiessenGermany
  4. 4.Institute for Physical ChemistryJustus-Liebig-University of GiessenGiessenGermany
  5. 5.Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical PathophysiologyJustus-Liebig University GiessenGiessenGermany
  6. 6.Center for Information Services and High Performance ComputingTU DresdenDresdenGermany
  7. 7.Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal ResearchUniversity of UlmUlmGermany
  8. 8.Department of Diagnostic and Interventional RadiologyBG Trauma Hospital Frankfurt/MainFrankfurtGermany

Personalised recommendations