Histochemistry and Cell Biology

, Volume 144, Issue 5, pp 471–478 | Cite as

The dynamics of DNA methylation and hydroxymethylation during amelogenesis

  • Hirotaka Yoshioka
  • Tomoko Minamizaki
  • Yuji YoshikoEmail author
Original Paper


Amelogenesis is a multistep process that relies on specific temporal and spatial signaling networks between the dental epithelium and mesenchymal tissues. Epigenetic modifications of key developmental genes in this process may be closely linked to a network of molecular events. However, the role of epigenetic regulation in amelogenesis remains unclear. Here, we have uncovered the spatial distributions of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) to determine epigenetic events in the mandibular incisors of mice. Immunohistochemistry and dot blotting showed that 5-hmC in ameloblasts increased from the secretory stage to the later maturation stage. We also demonstrated the distribution of 5-mC-positive ameloblasts with punctate nuclear labeling from sometime after the initiation of the secretory stage to the later maturation stage; however, dot blotting failed to detect this change. No obvious alteration of 5-mC/5-hmC staining in odontoblasts and dental pulp cells was observed. Concomitant with quantitative expression data, immunohistochemistry showed that maintenance DNA methyltransferase DNMT1 was highly expressed in immature dental epithelial cells and subsequently decreased at later stages of development. Meanwhile, de novo DNA methyltransferase Dnmt3a and Dnmt3b and DNA demethylase Tet family genes were universally expressed, except Tet1 that was highly expressed in immature dental epithelial cells. Thus, DNMT1 may sustain the undifferentiated status of dental epithelial cells through the maintenance of DNA methylation, while the hydroxylation of 5-mC may occur through the whole differentiation process by TET activity. Taken together, these data indicate that the dynamic changes of 5-mC and 5-hmC may be critical for the regulation of amelogenesis.


Epigenetics Amelogenesis Ameloblasts Immunohistochemistry 



We are grateful to Azusa Onishi, Chieko Niwata, and Rina Ohtake for technical assistance with procedures. This work was supported by the Japan Society for the Promotion of Science (Grants-in-Aid for Young Scientists 24791962 to H. Y.).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–471. doi: 10.1038/nature12749 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Biehs B, Hu JK-H, Strauli NB, Sangiorgi E, Jung H, Heber R-P, Ho S, Goodwin AF, Dasen JS, Capecchi MR, Klein OD (2013) BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol 15:846–852. doi: 10.1038/ncb2766 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–226. doi: 10.1038/nature12362 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bleicher F (2014) Odontoblast physiology. Exp Cell Res 325:65–71. doi: 10.1016/j.yexcr.2013.12.012 CrossRefPubMedGoogle Scholar
  5. Bronckers A (1983) A histological and biochemical study of the effect of vitamin C-deficiency on induction of amelogenesis in hamster molars in vitro. Arch Oral Biol 28:681–692CrossRefPubMedGoogle Scholar
  6. Couve E, Osorio R, Schmachtenberg O (2013) The amazing odontoblast: activity, autophagy, and aging. J Dent Res 92:765–772. doi: 10.1177/0022034513495874 CrossRefPubMedGoogle Scholar
  7. Delgado-Calle J, Sañudo C, Sanchez-Verde L, Garcia-Renedo RJ, Arozamena J, Riancho JA (2011) Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 49:830–838. doi: 10.1016/j.bone.2011.06.006 CrossRefPubMedGoogle Scholar
  8. Delgado-Calle J, Sañudo C, Bolado A, Fernandez AF, Arozamena J, Pascual-Carra MA, Rodriguez-Rey JC, Fraga MF, Bonewald L, Riancho JA (2012) DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J Bone Miner Res 27:926–937. doi: 10.1002/jbmr.1491 CrossRefPubMedGoogle Scholar
  9. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402. doi: 10.1038/nature10008 CrossRefPubMedGoogle Scholar
  10. Harada H, Kettunen P, Jung HS, Mustonen T, Wang Y, Thesleff I (1999) Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 147:105–120PubMedCentralCrossRefPubMedGoogle Scholar
  11. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C-X, Zhang K, He C, Xu G-L (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307. doi: 10.1126/science.1210944 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, Klein OD, Thesleff I, Michon F (2012) Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell 23:317–328. doi: 10.1016/j.devcel.2012.05.012 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Kawano S, Saito M, Handa K, Morotomi T, Toyono T, Seta Y, Nakamura N, Uchida T, Toyoshima K, Ohishi M, Harada H (2004) Characterization of dental epithelial progenitor cells derived from cervical-loop epithelium in a rat lower incisor. J Dent Res 83:129–133. doi: 10.1177/154405910408300209 CrossRefPubMedGoogle Scholar
  14. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479. doi: 10.1038/nature12750 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Lee SK (1996) Full-length sequence, localization, and chromosomal mapping of ameloblastin. J Biol Chem 271:4431–4435. doi: 10.1074/jbc.271.8.4431 CrossRefPubMedGoogle Scholar
  16. Morotomi T, Kawano S, Toyono T, Kitamura C, Terashita M, Uchida T, Toyoshima K, Harada H (2005) In vitro differentiation of dental epithelial progenitor cells through epithelial-mesenchymal interactions. Arch Oral Biol 50:695–705. doi: 10.1016/j.archoralbio.2004.12.006 CrossRefPubMedGoogle Scholar
  17. Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H, Ishii M (2015) DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21:281–287. doi: 10.1038/nm.3774 PubMedGoogle Scholar
  18. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397. doi: 10.1038/nature10102 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G, Chandran S, Hay DC, Bradley M, Wilmut I, De Sousa P (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21:1332–1342. doi: 10.1038/cr.2011.113 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Seidel K, Ahn CP, Lyons D, Nee A, Ting K, Brownell I, Cao T, Carano RAD, Curran T, Schober M, Fuchs E, Joyner A, Martin GR, de Sauvage FJ, Klein OD (2010) Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development 137:3753–3761. doi: 10.1242/dev.056358 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463:563–567. doi: 10.1038/nature08683 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey N, Zheng L, Hu JCC (2010) Regulation of dental enamel shape and hardness. J Dent Res 89:1024–1038. doi: 10.1177/0022034510375829 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220. doi: 10.1038/nrg3354 CrossRefPubMedGoogle Scholar
  24. Szulwach KE, Li X, Li Y, Song C-X, Han JW, Kim S, Namburi S, Hermetz K, Kim JJ, Rudd MK, Yoon Y-S, Ren B, He C, Jin P (2011) Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet 7:e1002154. doi: 10.1371/journal.pgen.1002154 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Tsai C-C, Su P-F, Huang Y-F, Yew T-L, Hung S-C (2012) Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47:169–182. doi: 10.1016/j.molcel.2012.06.020 CrossRefPubMedGoogle Scholar
  26. Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508. doi: 10.1038/nrg1380 CrossRefPubMedGoogle Scholar
  27. Tummers M, Thesleff I (2009) The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol 312B:309–319. doi: 10.1002/jez.b.21280 CrossRefPubMedGoogle Scholar
  28. Villagra A, Gutirrez J, Paredes R, Sierra J, Puchi M, Imschenetzky M, Van Wijnen A, Lian J, Stein G, Stein J, Montecino M (2002) Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem 85:112–122. doi: 10.1002/jcb.10113 CrossRefPubMedGoogle Scholar
  29. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266. doi: 10.1038/nsmb.2470 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hirotaka Yoshioka
    • 1
  • Tomoko Minamizaki
    • 1
  • Yuji Yoshiko
    • 1
    Email author
  1. 1.Department of Calcified Tissue BiologyHiroshima University Institute of Biomedical & Health SciencesHiroshimaJapan

Personalised recommendations