Histochemistry and Cell Biology

, Volume 144, Issue 2, pp 123–131 | Cite as

Artifacts in single-molecule localization microscopy

Original Paper

Abstract

Single-molecule localization microscopy provides subdiffraction resolution images with virtually molecular resolution. Through the availability of commercial instruments and open-source reconstruction software, achieving super resolution is now public domain. However, despite its conceptual simplicity, localization microscopy remains prone to user errors. Using direct stochastic optical reconstruction microscopy, we investigate the impact of irradiation intensity, label density and photoswitching behavior on the distribution of membrane proteins in reconstructed super-resolution images. We demonstrate that high emitter densities in combination with inappropriate photoswitching rates give rise to the appearance of artificial membrane clusters. Especially, two-dimensional imaging of intrinsically three-dimensional membrane structures like microvilli, filopodia, overlapping membranes and vesicles with high local emitter densities is prone to generate artifacts. To judge the quality and reliability of super-resolution images, the single-molecule movies recorded to reconstruct the images have to be carefully investigated especially when investigating membrane organization and cluster analysis.

Keywords

Super-resolution microscopy Localization microscopy dSTORM Artifacts Photoswitching 

Supplementary material

418_2015_1340_MOESM1_ESM.avi (889 kb)
dSTORM movie_1Microtubules labeled U2OS cells shown in Fig. 1 excited at 641 nm with ~7 kW cm−2 at a frame rate of 50 Hz (AVI 889 kb)
418_2015_1340_MOESM2_ESM.avi (1.5 mb)
dSTORM movie_2Microtubules labeled U2OS cells shown in Fig. 1 excited at 641 nm with ~0.3 kW cm−2 at a frame rate of 50 Hz. (AVI 1574 kb)
418_2015_1340_MOESM3_ESM.avi (1.5 mb)
dSTORM movie_3Microtubules labeled U2OS cells shown in Fig. 1 excited at 641 nm with ~0.1 kW cm−2 at a frame rate of 50 Hz. (AVI 1585 kb)
418_2015_1340_MOESM4_ESM.avi (1.8 mb)
dSTORM movie_4Alexa Fluor 647-WGA-labeled glycans in the basal plasma membrane of U2OS cells shown in Fig. 1 excited at 641 nm with ~7 kW cm−2 at a frame rate of 50 Hz. (AVI 1879 kb)
418_2015_1340_MOESM5_ESM.avi (2.3 mb)
dSTORM movie_5Alexa Fluor 647-WGA-labeled glycans in the basal plasma membrane of U2OS cells shown in Fig. 1 excited at 641 nm with ~0.3 kW cm−2 at a frame rate of 50 Hz. (AVI 2394 kb)
418_2015_1340_MOESM6_ESM.avi (2.4 mb)
dSTORM movie_6Alexa Fluor 647-WGA-labeled glycans in the basal plasma membrane of U2OS cells shown in Fig. 1 excited at 641 nm with ~0.1 kW cm−2 at a frame rate of 50 Hz. (AVI 2456 kb)

References

  1. Bar-On D, Wolter S, van de Linde S, Heilemann M, Nudelman G, Nachliel E, Gutman M, Sauer M, Ashery U (2012) Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J Biol Chem 287:27158–27167PubMedCentralPubMedCrossRefGoogle Scholar
  2. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:6172–6176CrossRefGoogle Scholar
  3. Boyce M, Bertozzi CR (2011) Bringing chemistry to life. Nat Methods 8:638–642PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chen J, Gao J, Wu J, Zhang M, Cai M, Xu H, Jiang J, Tian Z, Wang H (2015) Revealing the carbohydrate pattern on a cell surface by super-resolution imaging. Nanoscale 7:3373–3380PubMedCrossRefGoogle Scholar
  5. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036PubMedCentralPubMedCrossRefGoogle Scholar
  6. Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ, Holm T, Rings A, DiAntonio A, Hallermann S, Ashery U, Heckmann M, Sauer M, Kittel RJ (2014) Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat Commun 5:4650PubMedCentralPubMedCrossRefGoogle Scholar
  7. Fricke F, Malkusch S, Wangorsch G, Greiner JF, Kaltschmidt B, Kaltschmidt C, Widera D, Dandekar T, Heilemann M (2014) Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol 142:91–101PubMedCrossRefGoogle Scholar
  8. Gao J, Wang Y, Cai M, Pan Y, Xu H, Jiang J, Ji H, Wang H (2015) Mechanistic insights into EGFR membrane clustering revealing by super-resolution imaging. Nanoscale 7:2511–2519PubMedCrossRefGoogle Scholar
  9. Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537PubMedCrossRefGoogle Scholar
  10. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176CrossRefGoogle Scholar
  11. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7:339–340PubMedCrossRefGoogle Scholar
  12. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8:279–280PubMedCrossRefGoogle Scholar
  13. Holm T, Klein T, Löschberger A, Klamp T, Wiebusch G, van de Linde S, Sauer M (2014) A blueprint for cost-efficient localization microscopy. ChemPhysChem 15:651–654PubMedCrossRefGoogle Scholar
  14. Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW, Eggeling C (2014) Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5:5412PubMedCrossRefGoogle Scholar
  15. Klein T, Proppert S, Sauer M (2014) Eight years of single-molecule localization microscopy. Histochem Cell Biol 141:561–575PubMedCrossRefGoogle Scholar
  16. Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-ACnp1 deposition occurs during G2 in fission yeast. Open Biol 2:120078PubMedCentralPubMedCrossRefGoogle Scholar
  17. Letschert S, Göhler A, Franke C, Bertleff-Zieschang N, Memmel E, Doose S, Seibel J, Sauer M (2014) Super-resolution imaging of plasma membrane glycans. Angew Chem 53:10921–10924CrossRefGoogle Scholar
  18. Löschberger A, van de Linde S, Dabauvalle M, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575PubMedCrossRefGoogle Scholar
  19. Löschberger A, Franke C, Krohne G, van de Linde S, Sauer M (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127:4351–4355PubMedCrossRefGoogle Scholar
  20. Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16:790–797PubMedCrossRefGoogle Scholar
  21. Malkusch S, Muranyi W, Müller B, Kräusslich H, Heilemann M (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139:173–179PubMedCrossRefGoogle Scholar
  22. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867PubMedCrossRefGoogle Scholar
  23. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367PubMedCentralPubMedCrossRefGoogle Scholar
  24. Puchner EM, Walter JM, Kasper R, Huang B, Lim WA (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci 110:16015–16020PubMedCentralPubMedCrossRefGoogle Scholar
  25. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B 39:172–212Google Scholar
  26. Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, Unser M (2015) Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods. doi:10.1038/nmeth.3442
  27. Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 5:4509PubMedCentralPubMedGoogle Scholar
  28. Sauer M (2013) Localization microscopy coming of age: from concepts to biological impact. J Cell Sci 126:3505–3513PubMedCrossRefGoogle Scholar
  29. Schücker K, Holm T, Franke C, Sauer M, Benavente R (2015) Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc Natl Acad Sci USA 112:2029–2033PubMedCentralPubMedCrossRefGoogle Scholar
  30. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21CrossRefGoogle Scholar
  31. Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JAG, Ellenberg J (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658PubMedCrossRefGoogle Scholar
  32. van de Linde S, Sauer M (2014) How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev 43:1076–1087PubMedCrossRefGoogle Scholar
  33. van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149:260–266PubMedCrossRefGoogle Scholar
  34. van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009PubMedCrossRefGoogle Scholar
  35. Whelan DR, Bell TDM (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924PubMedCentralPubMedCrossRefGoogle Scholar
  36. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12:655–662PubMedCrossRefGoogle Scholar
  37. Wolter S, Endersfelder U, van de Linde S, Heilemann M, Sauer M (2011) Measuring localization performance of super-resolution algorithms on very active samples. Opt Express 19:7020–7033PubMedCrossRefGoogle Scholar
  38. Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle M, van de Linde S, Sauer M (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041PubMedCrossRefGoogle Scholar
  39. Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9:721–723PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biotechnology and BiophysicsUniversity WürzburgWürzburgGermany

Personalised recommendations