Advertisement

Histochemistry and Cell Biology

, Volume 142, Issue 6, pp 601–617 | Cite as

Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina

  • A. Trost
  • F. Schroedl
  • J. Marschallinger
  • F. J. Rivera
  • B. Bogner
  • C. Runge
  • S. Couillard-Despres
  • L. Aigner
  • H. A. Reitsamer
Original Paper

Abstract

Doublecortin (DCX) is predominantly expressed in neuronal precursor cells and young immature neurons of the developing and adult brain, where it is involved in neuronal differentiation, migration and plasticity. Moreover, its expression pattern reflects neurogenesis, and transgenic DCX promoter-driven reporter models have been previously used to investigate adult neurogenesis. In this study, we characterize dsRed2 reporter protein-expressing cells in the adult retina of the transgenic DCX promoter-dsRed2 rat model, with the aim to identify cells with putative neurogenic activity. Additionally, we confirmed the expression of the dsRed2 protein in DCX-expressing cells in the adult hippocampal dentate gyrus. Adult DCX-dsRed2 rat retinas were analyzed by immunohistochemistry for expression of DCX, NF200, Brn3a, Sox2, NeuN, calbindin, calretinin, PKC-a, Otx2, ChAT, PSA-NCAM and the glial markers GFAP and CRALBP, followed by confocal laser-scanning microscopy. In addition, brain sections of transgenic rats were analyzed for dsRed2 expression and co-localization with DCX, NeuN, GFAP and Sox2 in the cortex and dentate gyrus. Endogenous DCX expression in the adult retina was confined to horizontal cells, and these cells co-expressed the DCX promoter-driven dsRed2 reporter protein. In addition, we encountered dsRed2 expression in various other cell types in the retina: retinal ganglion cells (RGCs), a subpopulation of amacrine cells, a minority of bipolar cells and in perivascular cells. Since also RGCs expressed dsRed2, the DCX-dsRed2 rat model might offer a useful tool to study RGCs in vivo under various conditions. Müller glial cells, which have previously been identified as cells with stem cell features and with neurogenic potential, did express neither endogenous DCX nor the dsRed2 reporter. However, and surprisingly, we identified a perivascular glial cell type expressing the dsRed2 reporter, enmeshed with the glia/stem cell marker GFAP and colocalizing with the neural stem cell marker Sox2. These findings suggest the so far undiscovered existence of perivascular associated cell with neural stem cell-like properties in the adult retina.

Keywords

Doublecortin Retina Retinal ganglion cells Perivascular cells Dentate gyrus Cortex 

Abbreviations

DCX

Doublecortin

INL

Inner nuclear layer

IPL

Inner plexiform layer

GCL

Ganglion cell layer

RGCs

Retinal ganglion cells

Notes

Acknowledgments

The work was supported by Adele Rabensteiner Foundation, Fuchs-Foundation, Lotte Schwarz Endowment for Experimental Ophthalmology and Glaucoma Research, PMU-FFF (R-10/03/016-TRO) and FWF (FWF-P15729).

References

  1. Baas D, Bumsted KM, Martinez JA, Vaccarino FM, Wikler KC, Barnstable CJ (2000) The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Brain Res Mol Brain Res 78:26–37PubMedCrossRefGoogle Scholar
  2. Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–864PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bartsch U, Kirchhoff F, Schachner M (1990) Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina. J Neurocytol 19:550–565PubMedCrossRefGoogle Scholar
  4. Bastianelli E, Takamatsu K, Okazaki K, Hidaka H, Pochet R (1995) Hippocalcin in rat retina. Comparison with calbindin-D28 k, calretinin and neurocalcin. Exp Eye Res 60:257–266PubMedCrossRefGoogle Scholar
  5. Beby F, Lamonerie T (2013) The homeobox gene Otx2 in development and disease. Exp Eye Res 111:9–16PubMedCrossRefGoogle Scholar
  6. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427PubMedCentralPubMedCrossRefGoogle Scholar
  7. Benninghoff DD (2004) Anatomie—makroskopische anatomie, histologie, embryologie, zellbiologie. Elsevier Urban Fisch 2:690–691Google Scholar
  8. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRefGoogle Scholar
  9. Bunt-Milam AH, Saari JC (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol 97:703–712PubMedCrossRefGoogle Scholar
  10. Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31:676–684PubMedCrossRefGoogle Scholar
  11. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14PubMedCrossRefGoogle Scholar
  12. Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006) Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci 24:1535–1545PubMedCrossRefGoogle Scholar
  13. Couillard-Despres S, Finkl R, Winner B, Ploetz S, Wiedermann D, Aigner R, Bogdahn U, Winkler J, Hoehn M, Aigner L (2008) In vivo optical imaging of neurogenesis: watching new neurons in the intact brain. Mol Imaging 7:28–34PubMedGoogle Scholar
  14. Coulombre JL, Coulombre AJ (1965) Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol 12:79–92PubMedCrossRefGoogle Scholar
  15. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716PubMedCrossRefGoogle Scholar
  16. Drager UC (1983) Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature 303:169–172PubMedCrossRefGoogle Scholar
  17. Engelhardt M, Bogdahn U, Aigner L (2005) Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin. Brain Res 1040:98–111PubMedCrossRefGoogle Scholar
  18. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51PubMedCrossRefGoogle Scholar
  19. Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252PubMedCrossRefGoogle Scholar
  20. Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM (2006) Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci 26:8609–8621PubMedCrossRefGoogle Scholar
  21. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241PubMedCrossRefGoogle Scholar
  22. Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V (2011) Adult human Muller glia cells are a highly efficient source of rod photoreceptors. Stem Cells 29:344–356PubMedCrossRefGoogle Scholar
  23. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271PubMedCrossRefGoogle Scholar
  24. Gomez-Climent MA, Castillo-Gomez E, Varea E, Guirado R, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex 18:2229–2240PubMedCrossRefGoogle Scholar
  25. Gomez-Climent MA, Guirado R, Castillo-Gomez E, Varea E, Gutierrez-Mecinas M, Gilabert-Juan J, Garcia-Mompo C, Vidueira S, Sanchez-Mataredona D, Hernandez S, Blasco-Ibanez JM, Crespo C, Rutishauser U, Schachner M, Nacher J (2010) The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed in a subpopulation of mature cortical interneurons characterized by reduced structural features and connectivity. Cereb Cortex 21:1028–1041PubMedCrossRefGoogle Scholar
  26. Hamano K, Kiyama H, Emson PC, Manabe R, Nakauchi M, Tohyama M (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J Comp Neurol 302:417–424PubMedCrossRefGoogle Scholar
  27. Karl MO, Reh TA (2010) Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 16:193–202PubMedCentralPubMedCrossRefGoogle Scholar
  28. Karl MO, Reh TA (2012) Studying the generation of regenerated retinal neuron from Muller glia in the mouse eye. Methods Mol Biol 884:213–227PubMedCrossRefGoogle Scholar
  29. Karl C, Couillard-Despres S, Prang P, Munding M, Kilb W, Brigadski T, Plotz S, Mages W, Luhmann H, Winkler J, Bogdahn U, Aigner L (2005) Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92:264–282PubMedCrossRefGoogle Scholar
  30. Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 105:19508–19513PubMedCentralPubMedCrossRefGoogle Scholar
  31. Koike C, Nishida A, Ueno S, Saito H, Sanuki R, Sato S, Furukawa A, Aizawa S, Matsuo I, Suzuki N, Kondo M, Furukawa T (2007) Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 27:8318–8329PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina: a Golgi study. J Comp Neurol 318:147–187PubMedCrossRefGoogle Scholar
  33. Kolb H, Zhang L, Dekorver L (1993) Differential staining of neurons in the human retina with antibodies to protein kinase C isozymes. Vis Neurosci 10:341–351PubMedCrossRefGoogle Scholar
  34. Kolb H, Zhang L, Dekorver L, Cuenca N (2002) A new look at calretinin-immunoreactive amacrine cell types in the monkey retina. J Comp Neurol 453:168–184PubMedCrossRefGoogle Scholar
  35. Kondo H, Kuramoto H, Wainer BH, Yanaihara N (1985) Discrete distribution of cholinergic and vasoactive intestinal polypeptidergic amacrine cells in the rat retina. Neurosci Lett 54:213–218PubMedCrossRefGoogle Scholar
  36. Lee EJ, Kim IB, Lee E, Kwon SO, Oh SJ, Chun MH (2003) Differential expression and cellular localization of doublecortin in the developing rat retina. Eur J Neurosci 17:1542–1548PubMedCrossRefGoogle Scholar
  37. Lin YP, Ouchi Y, Satoh S, Watanabe S (2009) Sox2 plays a role in the induction of amacrine and Muller glial cells in mouse retinal progenitor cells. Invest Ophthalmol Vis Sci 50:68–74PubMedCrossRefGoogle Scholar
  38. Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009) DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex 19:1028–1041PubMedCrossRefGoogle Scholar
  39. MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20:971–982PubMedCrossRefGoogle Scholar
  40. Mariani AP (1990) Amacrine cells of the rhesus monkey retina. J Comp Neurol 301:382–400PubMedCrossRefGoogle Scholar
  41. Mojumder DK, Wensel TG, Frishman LJ (2008) Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 14:1600–1613PubMedCentralPubMedGoogle Scholar
  42. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211PubMedGoogle Scholar
  43. Murphy JA, Nickerson PE, Clarke DB (2007) Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Brain Res 1163:21–32PubMedCrossRefGoogle Scholar
  44. Murphy JA, Hartwick AT, Rutishauser U, Clarke DB (2009) Endogenous polysialylated neural cell adhesion molecule enhances the survival of retinal ganglion cells. Invest Ophthalmol Vis Sci 50:861–869PubMedCrossRefGoogle Scholar
  45. Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644PubMedCrossRefGoogle Scholar
  46. Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50:3860–3868PubMedCrossRefGoogle Scholar
  47. Nadal-Nicolas FM, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Bejar JJ, Vidal-Sanz M, Agudo-Barriuso M (2012) Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS ONE 7:e49830PubMedCentralPubMedCrossRefGoogle Scholar
  48. Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005) The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci 22:1928–1941PubMedCrossRefGoogle Scholar
  49. Nityanandam A, Parthasarathy S, Tarabykin V (2012) Postnatal subventricular zone of the neocortex contributes GFAP+ cells to the rostral migratory stream under the control of Sip1. Dev Biol 366:341–356PubMedCrossRefGoogle Scholar
  50. Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659PubMedCentralPubMedCrossRefGoogle Scholar
  51. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227PubMedCrossRefGoogle Scholar
  52. Park CM, Hollenberg MJ (1993) Growth factor-induced retinal regeneration in vivo. Int Rev Cytol 146:49–74PubMedCrossRefGoogle Scholar
  53. Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16PubMedCrossRefGoogle Scholar
  54. Peichl L, Gonzalez-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11:501–517PubMedCrossRefGoogle Scholar
  55. Pevny LH, Nicolis SK (2009) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42:421–424PubMedCrossRefGoogle Scholar
  56. Pittack C, Grunwald GB, Reh TA (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124:805–816PubMedGoogle Scholar
  57. Raymond ID, Vila A, Huynh UC, Brecha NC (2008) Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis 14:1559–1574PubMedCentralPubMedGoogle Scholar
  58. Reh TA, Levine EM (1998) Multipotential stem cells and progenitors in the vertebrate retina. J Neurobiol 36:206–220PubMedCrossRefGoogle Scholar
  59. Rohrenbeck J, Wassle H, Heizmann CW (1987) Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neurosci Lett 77:255–260PubMedCrossRefGoogle Scholar
  60. Sakami S, Etter P, Reh TA (2008) Activin signaling limits the competence for retinal regeneration from the pigmented epithelium. Mech Dev 125:106–116PubMedCentralPubMedCrossRefGoogle Scholar
  61. Sawaguchi A, Idate Y, Ide S, Kawano J, Nagaike R, Oinuma T, Suganuma T (1999) Multistratified expression of polysialic acid and its relationship to VAChT-containing neurons in the inner plexiform layer of adult rat retina. J Histochem Cytochem 47:919–928PubMedCrossRefGoogle Scholar
  62. Schnitzer J (1988) Astrocytes in Mammalian Retina. Prog Retin Eye Res 7:209–232CrossRefGoogle Scholar
  63. Schrodl F, Trost A, Strohmaier C, Bogner B, Runge C, Kaser-Eichberger A, Couillard-Despres S, Aigner L, Reitsamer HA (2013) Rat choroidal pericytes as a target of the autonomic nervous system. Cell Tissue Res 356:1–8PubMedCrossRefGoogle Scholar
  64. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160PubMedGoogle Scholar
  65. Shaw G, Weber K (1984) The intermediate filament complement of the retina: a comparison between different mammalian species. Eur J Cell Biol 33:95–104PubMedGoogle Scholar
  66. Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L (2013) SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development 140:1445–1456PubMedCentralPubMedCrossRefGoogle Scholar
  67. Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T, Chen DF (2008) Alpha-aminoadipate induces progenitor cell properties of Muller glia in adult mice. Invest Ophthalmol Vis Sci 49:1142–1150PubMedCentralPubMedCrossRefGoogle Scholar
  68. Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20:1187–1202PubMedCentralPubMedCrossRefGoogle Scholar
  69. Thiel G (2013) How Sox2 maintains neural stem cell identity. Biochem J 450:e1–e2PubMedCrossRefGoogle Scholar
  70. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRefGoogle Scholar
  71. Tsuruga H, Murata H, Araie M, Aihara M (2012) A model for the easy assessment of pressure-dependent damage to retinal ganglion cells using cyan fluorescent protein-expressing transgenic mice. Mol Vis 18:2468–2478PubMedCentralPubMedGoogle Scholar
  72. Varea E, Castillo-Gomez E, Gomez-Climent MA, Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J (2007) PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat 33:202–209PubMedCrossRefGoogle Scholar
  73. Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab DF (2007) Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 130:3321–3335PubMedCrossRefGoogle Scholar
  74. Voigt T (1986) Cholinergic amacrine cells in the rat retina. J Comp Neurol 248:19–35PubMedCrossRefGoogle Scholar
  75. von Bohlen Und Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420PubMedCrossRefGoogle Scholar
  76. Wakabayashi T, Kosaka J, Mori T, Takamori Y, Yamada H (2008) Doublecortin expression continues into adulthood in horizontal cells in the rat retina. Neurosci Lett 442:249–252PubMedCrossRefGoogle Scholar
  77. Wang X, Archibald ML, Stevens K, Baldridge WH, Chauhan BC (2010) Cyan fluorescent protein (CFP) expressing cells in the retina of Thy1-CFP transgenic mice before and after optic nerve injury. Neurosci Lett 468:110–114PubMedCrossRefGoogle Scholar
  78. Wassle H, Grunert U, Chun MH, Boycott BB (1995) The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361:537–551PubMedCrossRefGoogle Scholar
  79. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32PubMedCentralPubMedCrossRefGoogle Scholar
  80. Yang HK, Sundholm-Peters NL, Goings GE, Walker AS, Hyland K, Szele FG (2004) Distribution of doublecortin expressing cells near the lateral ventricles in the adult mouse brain. J Neurosci Res 76:282–295PubMedCrossRefGoogle Scholar
  81. Zhao S, Thornquist SC, Barnstable CJ (1995) In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res 677:300–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Trost
    • 1
    • 3
  • F. Schroedl
    • 1
    • 2
  • J. Marschallinger
    • 3
    • 5
  • F. J. Rivera
    • 3
    • 5
  • B. Bogner
    • 1
  • C. Runge
    • 1
  • S. Couillard-Despres
    • 4
    • 5
  • L. Aigner
    • 3
    • 5
  • H. A. Reitsamer
    • 1
  1. 1.Ophthalmology/OptometryParacelsus Medical UniversitySalzburgAustria
  2. 2.AnatomyParacelsus Medical UniversitySalzburgAustria
  3. 3.Molecular Regenerative MedicineParacelsus Medical UniversitySalzburgAustria
  4. 4.Institute of Experimental NeuroregenerationParacelsus Medical UniversitySalzburgAustria
  5. 5.Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS)Paracelsus Medical UniversitySalzburgAustria

Personalised recommendations