Advertisement

Histochemistry and Cell Biology

, Volume 142, Issue 5, pp 529–539 | Cite as

Comprehensive characterization of protein 4.1 expression in epithelium of large intestine

  • Jingxin Zhang
  • Shaomin Yang
  • Chao An
  • Jie Wang
  • Hongxia Yan
  • Yumin Huang
  • Jinlei Song
  • Changcheng Yin
  • Anthony J. Baines
  • Narla Mohandas
  • Xiuli An
Original Paper

Abstract

The protein 4.1 family consists of four members, 4.1R, 4.1N, 4.1B and 4.1G, each encoded by a distinct gene. All 4.1 mRNAs undergo extensive alternative splicing. Functionally, they usually serve as adapters that link actin-based cytoskeleton to plasma membrane proteins. It has been reported that 4.1 proteins are expressed in most animal cell types and tissues including epithelial cells and epithelial tissues. However, the expression of 4.1 proteins in large intestine has not been well characterized. In the present study, we performed RT-PCR, western blot and immunohistochemistry analysis to characterize the transcripts, the protein expression and cellular localization of 4.1 proteins in the epithelia of mouse large intestine. We show that multiple transcripts derive from each gene, including eight 4.1R isoforms, four 4.1N isoforms, four 4.1B isoforms and six 4.1G isoforms. However, at the protein level, only one or two major bands were detected, implying that not all transcripts are translated and/or the proteins do not accumulate at detectable levels. Immunohistochemistry revealed that 4.1R, 4.1N and 4.1B are all expressed at the lateral membrane as well as cytoplasm of epithelial cells, suggesting a potentially redundant role of these proteins. Our findings not only provide new insights into the structure of protein 4.1 genes but also lay the foundation for future functional studies.

Keywords

4.1R 4.1N 4.1B 4.1G Alternative splicing Large intestine Epithelium 

Notes

Acknowledgments

This work was supported in part by Grants 81171905 and 81272187 from Natural Science Foundation of China and by a Grant 7112085 from Beijing National Science Foundation.

References

  1. An X, Mohandas N (2008) Disorders of red cell membrane. Br J Haematol 141:367–375PubMedGoogle Scholar
  2. Baines AJ (2006) A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function. BMC Genom 7:85CrossRefGoogle Scholar
  3. Baines AJ, Lu HC, Bennett PM (2014) The protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta 1838:605–619. doi: 10.1016/j.bbamem.2013.05.030 PubMedCrossRefGoogle Scholar
  4. Binda AV, Kabbani N, Lin R, Levenson R (2002) D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol 62:507–513PubMedCrossRefGoogle Scholar
  5. Chen L, Hughes RA, Baines AJ et al (2011) Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of {beta}1 integrin. J Cell Sci 124:2478–2487. doi: 10.1242/jcs.078170 PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chishti AH, Kim AC, Marfatia SM et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282PubMedCrossRefGoogle Scholar
  7. Conboy JG, Chan JY, Chasis JA et al (1991) Tissue- and development-specific alternative RNA splicing regulates expression of multiple isoforms of erythroid membrane protein 4.1. J Biol Chem 266:8273–8280PubMedGoogle Scholar
  8. Correas I, Speicher DW, Marchesi VT (1986) Structure of the spectrin–actin binding-site of erythrocyte protein 4.1. J Biol Chem 261:3362–3366Google Scholar
  9. Discher D, Parra M, Conboy JG, Mohandas N (1993) Mechanochemistry of the alternatively spliced spectrin–actin binding domain in membrane skeletal protein 4.1. J Biol Chem 268:7186–7195PubMedGoogle Scholar
  10. Discher DE, Winardi R, Schischmanoff PO et al (1995) Mechanochemistry of protein 4.1’s spectrin–actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol 130:897–907PubMedCrossRefGoogle Scholar
  11. Fiedler MJ, Nathanson MH (2011) The type I inositol 1,4,5-trisphosphate receptor interacts with protein 4.1N to mediate neurite formation through intracellular Ca waves. Neurosignals 19:75–85. doi: 10.1159/000324507 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Gascard P, Parra MK, Zhao Z et al (2004) Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5′ alternative splicing. Biochim Biophys Acta 1680:71–82PubMedCrossRefGoogle Scholar
  13. Gimm JA, An X, Nunomura W, Mohandas N (2002) Functional characterization of spectrin–actin-binding domains in 4.1 family of proteins. Biochemistry 41:7275–7282PubMedCrossRefGoogle Scholar
  14. Kang Q, Yu Y, Pei X et al (2009) Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood 113:6128–6137PubMedCrossRefPubMedCentralGoogle Scholar
  15. Krauss SW, Lee G, Chasis JA et al (2004) Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro. J Biol Chem 279:27591–27598PubMedCrossRefGoogle Scholar
  16. Kuns R, Kissil JL, Newsham IF et al (2005) Protein 4.1B expression is induced in mammary epithelial cells during pregnancy and regulates their proliferation. Oncogene 24:6502–6515. doi: 10.1038/sj.onc.1208813 PubMedGoogle Scholar
  17. Liu C, Weng H, Chen L et al (2013) Impaired intestinal calcium absorption in protein 4.1R-deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem 288:11407–11415. doi: 10.1074/jbc.M112.436659 PubMedCrossRefPubMedCentralGoogle Scholar
  18. Lu D, Yan H, Othman T et al (2004) Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem J 377:51–59PubMedCrossRefPubMedCentralGoogle Scholar
  19. Mattagajasingh SN, Huang SC, Hartenstein JS, Benz EJ Jr (2000) Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem 275:30573–30585PubMedCrossRefGoogle Scholar
  20. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648PubMedCrossRefGoogle Scholar
  21. Parra M, Gascard P, Walensky LD et al (1998a) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 39:298–306CrossRefGoogle Scholar
  22. Parra M, Gascard P, Walensky LD et al (1998b) Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics 49:298–306PubMedCrossRefGoogle Scholar
  23. Parra M, Gascard P, Walensky LD et al (2000) Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain. J Biol Chem 275:3247–3255PubMedCrossRefGoogle Scholar
  24. Parra M, Gee S, Chan N et al (2004) Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitate expression of diverse tissue-specific isoforms. Genomics 84:637–646PubMedCrossRefGoogle Scholar
  25. Peters LL, Weier HU, Walensky LD et al (1998) Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human. Genomics 54:348–350PubMedCrossRefGoogle Scholar
  26. Ramez M, Blot-Chabaud M, Cluzeaud F et al (2003) Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int 63:1321–1337PubMedCrossRefGoogle Scholar
  27. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277PubMedCrossRefGoogle Scholar
  28. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945PubMedCrossRefGoogle Scholar
  29. Salomao M, Zhang X, Yang Y et al (2008) Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA 105:8026–8031PubMedCrossRefPubMedCentralGoogle Scholar
  30. Schischmanoff PO, Yaswen P, Parra MK et al (1997) Cell shape-dependent regulation of protein 4.1 alternative pre-mRNA splicing in mammary epithelial cells. J Biol Chem 272:10254–10259PubMedCrossRefGoogle Scholar
  31. Scott C, Phillips GW, Baines AJ (2001) Properties of the C-terminal domain of 4.1 proteins. Eur J Biochem 268:3709–3717PubMedCrossRefGoogle Scholar
  32. Stagg MA, Carter E, Sohrabi N et al (2008) Cytoskeletal protein 4.1R affects repolarization and regulates calcium handling in the heart. Circ Res 103:855–863. doi: 10.1161/circresaha.108.176461 PubMedCrossRefGoogle Scholar
  33. Taylor-Harris PM, Keating LA, Maggs AM et al (2005) Cardiac muscle cell cytoskeletal protein 4.1: analysis of transcripts and subcellular location–relevance to membrane integrity, microstructure, and possible role in heart failure. Mamm Genome 16:137–151PubMedCrossRefGoogle Scholar
  34. Walensky LD, Blackshaw S, Liao D et al (1999) A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1. J Neurosci 19:6457–6467PubMedGoogle Scholar
  35. Wang H, Liu C, Debnath G et al (2010) Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochem Cell Biol 134:411–420. doi: 10.1007/s00418-010-0749-z PubMedCrossRefGoogle Scholar
  36. Wang J, Song J, An C, et al. (2014) A 130 kDa protein 4.1B regulates cell adhesion, spreading and migration of mouse embryo fibroblasts by influencing actin cytoskeleton organization. J Biol Chem. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=2. doi: 10.1074/jbc.M113.516617
  37. Yang S, Guo X, Debnath G et al (2009) Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. Biochim Biophys Acta 1788:1458–1465PubMedCrossRefGoogle Scholar
  38. Yang S, Weng H, Chen L et al (2011) Lack of protein 4.1G causes male infertility due to altered expression and localization of cell adhesion molecule nectin-like 4 in testis. Mol Cell Biol 31(11):2276–2286Google Scholar
  39. Yi C, McCarty JH, Troutman SA et al (2005) Loss of the putative tumor suppressor band 4.1B/Dal1 gene is dispensable for normal development and does not predispose to cancer. Mol Cell Biol 25:10052–10059. doi: 10.1128/MCB.25.22.10052-10059.2005 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Zhang S, Mizutani A, Hisatsune C et al (2003) Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin–Darby canine kidney cells. J Biol Chem 278:4048–4056. doi: 10.1074/jbc.M209960200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jingxin Zhang
    • 1
  • Shaomin Yang
    • 2
  • Chao An
    • 3
  • Jie Wang
    • 1
    • 3
  • Hongxia Yan
    • 3
  • Yumin Huang
    • 4
  • Jinlei Song
    • 1
  • Changcheng Yin
    • 1
  • Anthony J. Baines
    • 5
  • Narla Mohandas
    • 4
  • Xiuli An
    • 3
    • 6
  1. 1.Department of BiophysicsPeking University Health Science CenterBeijingChina
  2. 2.Department of PathologyPeking University Health Science CenterBeijingChina
  3. 3.Membrane Biology LaboratoryNew York Blood CenterNew YorkUSA
  4. 4.Red Cell Physiology LaboratoryNew York Blood CenterNew YorkUSA
  5. 5.School of BiosciencesUniversity of KentCanterburyUK
  6. 6.College of Life ScienceZhengzhou UniversityZhengzhouChina

Personalised recommendations