Histochemistry and Cell Biology

, Volume 141, Issue 6, pp 613–627 | Cite as

SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy

  • Ullrich Köthe
  • Frank Herrmannsdörfer
  • Ilia Kats
  • Fred A. Hamprecht
Original Paper


Although there are many reconstruction algorithms for localization microscopy, their use is hampered by the difficulty to adjust a possibly large number of parameters correctly. We propose SimpleSTORM, an algorithm that determines appropriate parameter settings directly from the data in an initial self-calibration phase. The algorithm is based on a carefully designed yet simple model of the image acquisition process which allows us to standardize each image such that the background has zero mean and unit variance. This standardization makes it possible to detect spots by a true statistical test (instead of hand-tuned thresholds) and to de-noise the images with an efficient matched filter. By reducing the strength of the matched filter, SimpleSTORM also performs reasonably on data with high-spot density, trading off localization accuracy for improved detection performance. Extensive validation experiments on the ISBI Localization Challenge Dataset, as well as real image reconstructions, demonstrate the good performance of our algorithm.


Localization microscopy STORM reconstruction Matched filter Noise normalization Self-calibration 



This research was supported by contract research “Methoden für die Lebenswissenschaften” of the Baden-Württemberg Stiftung. We are grateful to Mike Heilemann, Varun Venkataramani and Benjamin Flottmann for providing the raw data of the images presented in this paper, as well as for giving many helpful comments on the algorithm. We also thank the organizers of the ISBI Localization Microscopy Challenge for the permission to use their artificial data.


  1. Abraham AV, Ram S, Chao J, Ward ES, Ober RJ (2009) Quantitative study of single molecule location estimation techniques. Opt Express 17(26):23,352CrossRefGoogle Scholar
  2. Andersson SB (2008) Localization of a fluorescent source without numerical fitting. Opt Express 16(23):18,714–18,724CrossRefGoogle Scholar
  3. Anscombe FJ (1948) The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4):246–254CrossRefGoogle Scholar
  4. Baddeley D (2012) PYME—the python localization microscopy environment. Accessed: 12 Feb. 2014
  5. Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514PubMedCentralPubMedCrossRefGoogle Scholar
  6. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645PubMedCrossRefGoogle Scholar
  7. Boulanger J, Kervrann C, Bouthemy P, Elbau P, Sibarita JB, Salamero J (2010) Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans Med Imaging 29(2):442–454PubMedCrossRefGoogle Scholar
  8. Brede N, Lakadamyali M (2012) GraspJ: an open source, real-time analysis package for super-resolution imaging. Optl Nanoscopy 1(1):1–7CrossRefGoogle Scholar
  9. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C et al (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395CrossRefGoogle Scholar
  11. Grüll F, Kirchgessner M, Kaufmann R, Hausmann M, Kebschull U (2011) Accelerating image analysis for localization microscopy with FPGAs. In: Field Programmable Logic and Applications (FPL), 2011 International Conference, pp 1–5Google Scholar
  12. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6:689–690PubMedCrossRefGoogle Scholar
  13. Heilemann M (2010) Fluorescence microscopy beyond the diffraction limit. J Biotechnol 149(4):243–251PubMedCrossRefGoogle Scholar
  14. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie Int Ed 47(33):6172–6176CrossRefGoogle Scholar
  15. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angewandte Chemie Int Ed 48(37):6903–6908CrossRefGoogle Scholar
  16. Henriques R, Mhlanga MM (2009) PALM and STORM: what hides beyond the Rayleigh limit? Biotechnol J 4(6):846–857PubMedCrossRefGoogle Scholar
  17. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340PubMedCrossRefGoogle Scholar
  18. Herbert A (2012) PeakFit ImageJ plugins for single-molecule light microscopy. Accessed: 12 Feb. 2014
  19. Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417Google Scholar
  20. Holden S, Uphoff S, Kapanidis A (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279PubMedCrossRefGoogle Scholar
  21. Huang B (2010) Super-resolution optical microscopy: multiple choices. Curr Opin Chem Biol 14(1):10–14PubMedCrossRefGoogle Scholar
  22. Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5):1377–1393PubMedCentralPubMedCrossRefGoogle Scholar
  23. Izeddin I, Boulanger J, Racine V, Specht C, Kechkar A, Nair D, Triller A, Choquet D, Dahan M, Sibarita J (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20(3):2081–2095PubMedCrossRefGoogle Scholar
  24. Kim K, Min J, Carlini L, Unser M, Manley S, Jeon D, Ye J (2013) Fast maximum likelihood high-density low-SNR super-resolution localization microscopy. In: Proceedings 10th International Workshop Sampling Theory and Applications (SampTA’13), pp 285–288Google Scholar
  25. Křížek P, Raška I, Hagen GM (2011) Minimizing detection errors in single molecule localization microscopy. Opt Express 19(4):3226–3235PubMedCrossRefGoogle Scholar
  26. Lidke K, Rieger B, Lidke D, Jovin T (2005) The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Process 14(9):1237–1245PubMedCrossRefGoogle Scholar
  27. Min J, Vonesch C, Olivier N, Kirshner H, Manley S, Ye J, Unser M (2013) Continuous localization using sparsity constraints for high-density super-resolution microscopy. In: Proceedings ISBI’13, pp 181–184Google Scholar
  28. Muranyi W, Malkusch S, Müller B, Heilemann M, Kräusslich HG (2013) Super-resolution microscopy reveals specific recruitment of hiv-1 envelope proteins to viral assembly sites dependent on the envelope c-terminal tail. PLoS Pathog 9(2):9(2):e198–e1003CrossRefGoogle Scholar
  29. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375PubMedCentralPubMedCrossRefGoogle Scholar
  30. Stallinga S, Rieger B (2012) Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model. Opt Express 20(6):5896–5921PubMedCrossRefGoogle Scholar
  31. Stetson PB (1987), DAOPHOT: a computer program for crowded-field stellar photometry. Publications of the Astronomical Society of the Pacific, pp 191–222Google Scholar
  32. Stuurman N (2012) Localization Microscopy MicroManager Plugin. Accessed: 12 Feb. 2014
  33. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783PubMedCentralPubMedCrossRefGoogle Scholar
  34. Turin G (1960) An introduction to matched filters. IRE Trans Inf Theory 6(3):311–329CrossRefGoogle Scholar
  35. Wolter S, Schüttpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22PubMedCrossRefGoogle Scholar
  36. Yu J (2011) Octane ImageJ plugin for super-resolution imaging and single molecule tracking. Accessed: 12 Feb. 2014
  37. Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9(7):721–723PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ullrich Köthe
    • 1
  • Frank Herrmannsdörfer
    • 1
  • Ilia Kats
    • 1
  • Fred A. Hamprecht
    • 1
  1. 1.Multi-Dimensional Image Processing GroupUniversity of HeidelbergHeidelbergGermany

Personalised recommendations