Histochemistry and Cell Biology

, Volume 142, Issue 1, pp 69–77 | Cite as

Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues

  • Laura Tarancón Díez
  • Claudia Bönsch
  • Sebastian Malkusch
  • Zinnia Truan
  • Mihaela Munteanu
  • Mike Heilemann
  • Oliver Hartley
  • Ulrike Endesfelder
  • Alexandre Fürstenberg
Original Paper


G protein-coupled receptor activation and desensitization leads to recruitment of arrestin proteins from cytosolic pools to the cell membrane where they form clusters difficult to characterize due to their small size and further mediate receptor internalization. We quantitatively investigated clustering of arrestin 3 induced by potent anti-HIV analogues of the chemokine RANTES after stimulation of the C–C chemokine receptor 5 using single-molecule localization-based super-resolution microscopy. We determined arrestin 3 cluster sizes and relative fractions of arrestin 3 molecules in each cluster through image-based analysis of the localization data by adapting a method originally developed for co-localization analysis from molecular coordinates. We found that only classical agonists in the set of tested ligands were able to efficiently recruit arrestin 3 to clusters mostly larger than 150 nm in size and compare our results with existing data on arrestin 2 clustering induced by the same chemokine analogues.


Clustering Super-resolution microscopy Single-molecule localization microscopy G protein-coupled receptors Arrestin CCR5 



We thank Jeffrey Benovic (Thomas Jefferson University) for the arrestin 3-GFP plasmid. This work was supported by the Swiss National Science Foundation through Ambizione fellowship PZ00P3_131935 (A.F.) and project number 310030_143789 (O.H.), as well as by Fondation Dormeur (O.H. and A.F.). M.H. acknowledges funding by the Bundesministerium für Bildung und Forschung (Grant Number 0315262) and the German Science Foundation (EXC 115).

Supplementary material

418_2014_1206_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1290 kb)


  1. Aramori I, Zhang J, Ferguson SSG, Bieniasz PD, Cullen BR, Caron MG (1997) Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J 16(15):4606–4616PubMedCentralPubMedCrossRefGoogle Scholar
  2. Banterle N, Khanh Huy B, Lemke EA, Beck M (2013) Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 183(3):363–367PubMedCrossRefGoogle Scholar
  3. Bertrand L, Parent S, Caron M, Legault M, Joly E, Angers S, Bouvier M, Brown M, Houle B, Menard L (2002) The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRs). J Recept Signal Transduct Res 22(1–4):533–541PubMedCrossRefGoogle Scholar
  4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645PubMedCrossRefGoogle Scholar
  5. Bockenhauer S, Fürstenberg A, Yao XJ, Kobilka BK, Moerner WE (2011) Conformational dynamics of single G protein-coupled receptors in solution. J Phys Chem B 115(45):13328–13338PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cordes T, Strackharn M, Stahl SW, Summerer W, Steinhauer C, Forthmann C, Puchner EM, Vogelsang J, Gaub HE, Tinnefeld P (2010) Resolving single-molecule assembled patterns with superresolution blink-microscopy. Nano Lett 10(2):645–651PubMedCrossRefGoogle Scholar
  7. Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013) Multi-scale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105(1):172–181PubMedCrossRefGoogle Scholar
  8. Escola J-M, Kuenzi G, Gaertner H, Foti M, Hartley O (2010) CC chemokine receptor 5 (CCR5) desensitization—cycling receptors accumulate in the trans-golgi network. J Biol Chem 285(53):41772–41780PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fürstenberg A, Heilemann M (2013) Single-molecule localization microscopy—near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. Phys Chem Chem Phys 15(36):14919–14930PubMedCrossRefGoogle Scholar
  10. Gaertner H, Cerini F, Escola J-M, Kuenzi G, Melotti A, Offord R, Rossitto-Borlat I, Nedellec R, Salkowitz J, Gorochov G, Mosier D, Hartley O (2008a) Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci USA 105(46):17706–17711PubMedCentralPubMedCrossRefGoogle Scholar
  11. Gaertner H, Lebeau O, Borlat I, Cerini F, Dufour B, Kuenzi G, Melotti A, Fish RJ, Offord R, Springael JY, Parmentier M, Hartley O (2008b) Highly potent HIV inhibition: engineering a key anti-HIV structure from PSC-RANTES into MIP-1 beta/CCL4. Protein Eng Des Sel 21(2):65–72PubMedCrossRefGoogle Scholar
  12. Gesty-Palmer D, Luttrell LM (2011) Refining efficacy: exploiting functional selectivity for drug discovery. Adv Pharmacol 62:79–107PubMedCrossRefGoogle Scholar
  13. Hartley O, Gaertner H, Wilken J, Thompson D, Fish R, Ramos A, Pastore C, Dufour B, Cerini F, Melotti A, Heveker N, Picard L, Alizon M, Mosier D, Kent S, Offord R (2004) Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci USA 101(47):16460–16465PubMedCentralPubMedCrossRefGoogle Scholar
  14. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908CrossRefGoogle Scholar
  15. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158PubMedCrossRefGoogle Scholar
  16. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272PubMedCentralPubMedCrossRefGoogle Scholar
  17. Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, Kharsany ABM, Sibeko S, Mlisana KP, Omar Z, Gengiah TN, Maarschalk S, Arulappan N, Mlotshwa M, Morris L, Taylor D, Grp CT (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329(5996):1168–1174CrossRefGoogle Scholar
  18. Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12(3):205–216PubMedCrossRefGoogle Scholar
  19. Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3(3):193–203PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406PubMedCrossRefGoogle Scholar
  21. Kohout TA, Lin FT, Perry SJ, Conner DA, Lefkowitz RJ (2001) Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98(4):1601–1606PubMedCentralPubMedGoogle Scholar
  22. Kuhmann SE, Hartley O (2008) Targeting chemokine receptors in HIV: A status report. Annu Rev Pharmacol Toxicol 48:425–461PubMedCrossRefGoogle Scholar
  23. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta(2)-adrenergic receptor into clathrin-coated pits. J Biol Chem 275(30):23120–23126PubMedCrossRefGoogle Scholar
  24. Lederman MM, Veazey RS, Offord R, Mosier DE, Dufour J, Mefford M, Piatak M Jr, Lifson JD, Salkowitz JR, Rodriguez B, Blauvelt A, Hartley O (2004) Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306(5695):485–487PubMedCrossRefGoogle Scholar
  25. Lee SF, Vérolet Q, Fürstenberg A (2013) Improved super-resolution microscopy with oxazine fluorophores in heavy water. Angew Chem Int Ed Engl 52(34):8948–8951PubMedCrossRefGoogle Scholar
  26. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517PubMedCrossRefGoogle Scholar
  27. Luttrell LM, Ferguson SSG, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin FT, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta(2) adrenergic receptor Src protein kinase complexes. Science 283(5402):655–661PubMedCrossRefGoogle Scholar
  28. Malkusch S, Endesfelder U, Mondry J, Gelleri M, Verveer PJ, Heilemann M (2012) Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem Cell Biol 137(1):1–10PubMedCrossRefGoogle Scholar
  29. Malkusch S, Muranyi W, Muller B, Krausslich HG, Heilemann M (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139(1):173–179PubMedCrossRefGoogle Scholar
  30. Moerner WE (2012) Microscopy beyond the diffraction limit using actively controlled single molecules. J Microsc 246(3):213–220PubMedCentralPubMedCrossRefGoogle Scholar
  31. Moore CAC, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482PubMedCrossRefGoogle Scholar
  32. Mundell SJ, Matharu AL, Kelly E, Benovic JL (2000) Arrestin isoforms dictate differential kinetics of A(2B) adenosine receptor trafficking. Biochemistry 39(42):12828–12836PubMedCrossRefGoogle Scholar
  33. Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grunwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10:557–562PubMedCrossRefGoogle Scholar
  34. Owen DM, Williamson DJ, Boelen L, Magenau A, Rossy J, Gaus K (2013) Quantitative analysis of three-dimensional fluorescence localization microscopy data. Biophys J 105(2):L05–L07PubMedCrossRefGoogle Scholar
  35. Pierce KL, Lefkowitz RJ (2001) Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2(10):727–733PubMedCrossRefGoogle Scholar
  36. Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10(8):579–590PubMedCrossRefGoogle Scholar
  37. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6):582–584PubMedCrossRefGoogle Scholar
  38. Ripley BD (1977) Modelling spatial patterns. J Roy Statist Soc B 39:172–212Google Scholar
  39. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363PubMedCentralPubMedCrossRefGoogle Scholar
  40. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795PubMedCentralPubMedCrossRefGoogle Scholar
  41. Santini F, Gaidarov I, Keen JH (2002) G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J Cell Biol 156(4):665–676PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975PubMedCentralPubMedCrossRefGoogle Scholar
  43. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375PubMedCentralPubMedCrossRefGoogle Scholar
  44. Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A (2013) Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79(2):308–321PubMedCrossRefGoogle Scholar
  45. Truan Z, Tarancón Díez L, Bönsch C, Malkusch S, Endesfelder U, Munteanu M, Hartley O, Heilemann M, Fürstenberg A (2013) Quantitative morphological analysis of arrestin 2 clustering upon G protein-coupled receptor stimulation by super-resolution microscopy. J Struct Biol 184(2):329–334PubMedCrossRefGoogle Scholar
  46. Wolter S, Schüttpelz M, Tscherepanow M, Van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22PubMedCrossRefGoogle Scholar
  47. Zidar DA (2011) Endogenous ligand bias by chemokines: implications at the front lines of infection and leukocyte trafficking. Endocr Metab Immune Disord Drug Targets 11(2):120–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Tarancón Díez
    • 1
  • Claudia Bönsch
    • 2
  • Sebastian Malkusch
    • 3
  • Zinnia Truan
    • 1
  • Mihaela Munteanu
    • 2
  • Mike Heilemann
    • 3
  • Oliver Hartley
    • 2
  • Ulrike Endesfelder
    • 3
  • Alexandre Fürstenberg
    • 1
  1. 1.Department of Human Protein SciencesUniversity of Geneva, CMUGeneva 4Switzerland
  2. 2.Department of Pathology and ImmunologyUniversity of Geneva, CMUGeneva 4Switzerland
  3. 3.Institute for Physical and Theoretical ChemistryGoethe-University FrankfurtFrankfurtGermany

Personalised recommendations