Histochemistry and Cell Biology

, Volume 141, Issue 6, pp 577–585 | Cite as

The changing point-spread function: single-molecule-based super-resolution imaging

  • Mathew H. Horrocks
  • Matthieu Palayret
  • David Klenerman
  • Steven F. Lee


Over the past decade, many techniques for imaging systems at a resolution greater than the diffraction limit have been developed. These methods have allowed systems previously inaccessible to fluorescence microscopy to be studied and biological problems to be solved in the condensed phase. This brief review explains the basic principles of super-resolution imaging in both two and three dimensions, summarizes recent developments, and gives examples of how these techniques have been used to study complex biological systems.


Single-molecule microscopy Super-resolution imaging PALM/(d)STORM imaging Localization microscopy 


  1. Abbe E (1873) Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch F Microsc Anat 9:413–468CrossRefGoogle Scholar
  2. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835. doi: 10.1529/biophysj.107.117689 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ando R, Hama H, Yamamoto-Hino M et al (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656. doi: 10.1073/pnas.202320599 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373. doi: 10.1126/science.1102506 PubMedCrossRefGoogle Scholar
  5. Annibale P, Vanni S, Scarselli M et al (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6:e22678. doi: 10.1371/journal.pone.0022678 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baddeley D, Crossman D, Rossberger S et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS ONE 6:e20645. doi: 10.1371/journal.pone.0020645 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Badieirostami M, Lew MD, Thompson MA, Moerner WE (2010) Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl Phys Lett 97:161103. doi: 10.1063/1.3499652 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753. doi: 10.1126/science.1146598 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi: 10.1126/science.1127344 PubMedCrossRefGoogle Scholar
  10. Chang H, Zhang M, Ji W et al (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA 109:4455–4460. doi: 10.1073/pnas.1113770109 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chudakov DM, Belousov VV, Zaraisky AG et al (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194. doi: 10.1038/nbt778 PubMedCrossRefGoogle Scholar
  12. Chudakov DM, Verkhusha VV, Staroverov DB et al (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22:1435–1439. doi: 10.1038/nbt1025 PubMedCrossRefGoogle Scholar
  13. Dedecker P, De Schryver FC, Hofkens J (2013) Fluorescent proteins: shine on, you crazy diamond. J Am Chem Soc 135:2387–2402. doi: 10.1021/ja309768d PubMedCrossRefGoogle Scholar
  14. Dempsey GT, Bates M, Kowtoniuk WE et al (2009) Photoswitching mechanism of cyanine dyes. J Am Chem Soc 131:18192–18193. doi: 10.1021/ja904588g PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dempsey GT, Vaughan JC, Chen KH et al (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036. doi: 10.1038/nmeth.1768 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Deschout H, Neyts K, Braeckmans K (2012) The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J Biophotonics 5:97–109. doi: 10.1002/jbio.201100078 PubMedCrossRefGoogle Scholar
  17. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358. doi: 10.1038/41048 PubMedCrossRefGoogle Scholar
  18. Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–356. doi: 10.1016/j.cell.2013.09.048 PubMedCrossRefGoogle Scholar
  19. Dunne PD, Fernandes RA, McColl J et al (2009) DySCo: quantitating associations of membrane proteins using two-color single-molecule tracking. Biophys J 97:L5–L7. doi: 10.1016/j.bpj.2009.05.046 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Durisic N, Laparra-Cuervo L, Sandoval-Álvarez A et al (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods. doi: 10.1038/nmeth.2784 PubMedGoogle Scholar
  21. Englander SW, Calhoun DB, Englander JJ (1987) Biochemistry without oxygen. Anal Biochem 161:300–306PubMedCrossRefGoogle Scholar
  22. Giannone G, Hosy E, Levet F et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99:1303–1310. doi: 10.1016/j.bpj.2010.06.005 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Grotjohann T, Testa I, Leutenegger M et al (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478:204–208. doi: 10.1038/nature10497 PubMedCrossRefGoogle Scholar
  24. Gurskaya NG, Verkhusha VV, Shcheglov AS et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465. doi: 10.1038/nbt1191 PubMedCrossRefGoogle Scholar
  25. Habuchi S, Tsutsui H, Kochaniak AB et al (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS ONE 3:e3944. doi: 10.1371/journal.pone.0003944 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Harada Y, Sakurada K, Aoki T et al (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216:49–68. doi: 10.1016/S0022-2836(05)80060-9 PubMedCrossRefGoogle Scholar
  27. Heilemann M, Margeat E, Kasper R et al (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806. doi: 10.1021/ja044686x PubMedCrossRefGoogle Scholar
  28. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176. doi: 10.1002/anie.200802376 PubMedCrossRefGoogle Scholar
  29. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48:6903–6908. doi: 10.1002/anie.200902073 PubMedCrossRefGoogle Scholar
  30. Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497. doi: 10.1007/BF01081333 CrossRefGoogle Scholar
  31. Henderson JN, Ai H-W, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci USA 104:6672–6677. doi: 10.1073/pnas.0700059104 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272. doi: 10.1529/biophysj.106.091116 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813. doi: 10.1126/science.1153529 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Juette MF, Gould TJ, Lessard MD et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5:527–529. doi: 10.1038/nmeth.1211 PubMedCrossRefGoogle Scholar
  35. Jung G, Bräuchle C, Zumbusch A (2001a) Two-color fluorescence correlation spectroscopy of one chromophore: application to the E222Q mutant of the green fluorescent protein. J Chem Phys 114:3149–3156. doi: 10.1063/1.1342014 CrossRefGoogle Scholar
  36. Jung G, Wiehler J, Steipe B et al (2001b) Single-molecule microscopy of the green fluorescent protein using simultaneous two-color excitation. ChemPhysChem 2:392–396. doi: 10.1002/1439-7641(20010618)2:6<392:AID-CPHC392>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  37. Klehs K, Spahn C, Endesfelder U et al (2013) Increasing the brightness of cyanine fluorophores for single-molecule and superresolution imaging. ChemPhysChem. doi: 10.1002/cphc.201300874 PubMedGoogle Scholar
  38. Kundu K, Knight SF, Willett N et al (2009) Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chem Int Ed Engl 48:299–303. doi: 10.1002/anie.200804851 PubMedCrossRefGoogle Scholar
  39. Lakadamyali M, Babcock H, Bates M et al (2012) 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7:e30826. doi: 10.1371/journal.pone.0030826 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lampe A, Haucke V, Sigrist SJ et al (2012) Multi-colour direct STORM with red emitting carbocyanines. Biol Cell 104:229–237. doi: 10.1111/boc.201100011 PubMedCrossRefGoogle Scholar
  41. Lee SF, Thompson MA, Schwartz MA et al (2011) Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophys J 100:L31–L33. doi: 10.1016/j.bpj.2011.02.022 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci USA 109:17436–17441. doi: 10.1073/pnas.1215175109 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lee SF, Vérolet Q, Fürstenberg A (2013) Improved super-resolution microscopy with oxazine fluorophores in heavy water. Angew Chem Int Ed Engl 52:8948–8951. doi: 10.1002/anie.201302341 PubMedCrossRefGoogle Scholar
  44. Lew MD, Lee SF, Badieirostami M, Moerner WE (2011a) Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt Lett 36:202–204PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lew MD, Lee SF, Ptacin JL et al (2011b) Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc Natl Acad Sci USA 108:E1102–E1110. doi: 10.1073/pnas.1114444108 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lillemeier BF, Mörtelmaier MA, Forstner MB et al (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11:90–96. doi: 10.1038/ni.1832 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Mizuno H, Mal TK, Tong KI et al (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058PubMedCrossRefGoogle Scholar
  48. Narayan P, Ganzinger KA, McColl J et al (2013) Single molecule characterization of the interactions between amyloid-β peptides and the membranes of hippocampal cells. J Am Chem Soc 135:1491–1498. doi: 10.1021/ja3103567 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA 102:9156–9159. doi: 10.1073/pnas.0501874102 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Olivier N, Keller D, Gönczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS ONE 8:e69004. doi: 10.1371/journal.pone.0069004 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. doi: 10.1126/science.1074952 PubMedCrossRefGoogle Scholar
  52. Pavani SRP, Thompson MA, Biteen JS et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 106:2995–2999. doi: 10.1073/pnas.0900245106 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Ptacin JL, Shapiro L (2013) Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 15:45–52. doi: 10.1111/cmi.12049 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ptacin JL, Lee SF, Garner EC et al (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12:791–798. doi: 10.1038/ncb2083 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893. doi: 10.1038/nmeth934 PubMedCrossRefGoogle Scholar
  56. Rieger B, Stallinga S (2013) The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem. doi: 10.1002/cphc.201300711 PubMedGoogle Scholar
  57. Rowland DJ, Biteen JS (2013) Top-hat and asymmetric gaussian-based fitting functions for quantifying directional single-molecule motion. ChemPhysChem. doi: 10.1002/cphc.201300774 PubMedGoogle Scholar
  58. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795. doi: 10.1038/nmeth929 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Santos A, Young IT (2000) Model-Based Resolution: applying the theory in quantitative microscopy. Appl Opt 39:2948–2958. doi: 10.1364/AO.39.002948 PubMedCrossRefGoogle Scholar
  60. Schoen I, Ries J, Klotzsch E et al (2011) Binding-activated localization microscopy of DNA structures. Nano Lett 11:4008–4011. doi: 10.1021/nl2025954 PubMedCrossRefGoogle Scholar
  61. Sengupta P, Jovanovic-Talisman T, Skoko D et al (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8:969–975. doi: 10.1038/nmeth.1704 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Shaner NC, Lin MZ, McKeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551. doi: 10.1038/nmeth.1209 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103:18911–18916. doi: 10.1073/pnas.0609643104 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Shtengel G, Galbraith JA, Galbraith CG et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106:3125–3130. doi: 10.1073/pnas.0813131106 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P (2008) Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130:16840–16841. doi: 10.1021/ja806590m PubMedCrossRefGoogle Scholar
  66. Subach FV, Patterson GH, Manley S et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159. doi: 10.1038/nmeth.1298 PubMedCentralPubMedCrossRefGoogle Scholar
  67. Subach FV, Zhang L, Gadella TWJ et al (2010) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17:745–755. doi: 10.1016/j.chembiol.2010.05.022 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Subach OM, Patterson GH, Ting L-M et al (2011) A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat Methods 8:771–777. doi: 10.1038/nmeth.1664 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Subach OM, Entenberg D, Condeelis JS, Verkhusha VV (2012) A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics. J Am Chem Soc 134:14789–14799. doi: 10.1021/ja3034137 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Swoboda M, Henig J, Cheng H-M et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6:6364–6369. doi: 10.1021/nn301895c PubMedCentralPubMedCrossRefGoogle Scholar
  71. Szymborska A, de Marco A, Daigle N et al (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658. doi: 10.1126/science.1240672 PubMedCrossRefGoogle Scholar
  72. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783PubMedCentralPubMedCrossRefGoogle Scholar
  73. Thompson MA, Casolari JM, Badieirostami M et al (2010) Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Proc Natl Acad Sci USA 107:17864–17871. doi: 10.1073/pnas.1012868107 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi: 10.1146/annurev.biochem.67.1.509 PubMedCrossRefGoogle Scholar
  75. Van de Linde S, Krstić I, Prisner T et al (2011a) Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10:499–506. doi: 10.1039/c0pp00317d PubMedCrossRefGoogle Scholar
  76. Van de Linde S, Löschberger A, Klein T et al (2011b) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009. doi: 10.1038/nprot.2011.336 PubMedCrossRefGoogle Scholar
  77. Vaughan JC, Dempsey GT, Sun E, Zhuang X (2013) Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. J Am Chem Soc 135:1197–1200. doi: 10.1021/ja3105279 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Vogelsang J, Kasper R, Steinhauer C et al (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47:5465–5469. doi: 10.1002/anie.200801518 PubMedCrossRefGoogle Scholar
  79. Vogelsang J, Cordes T, Forthmann C et al (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci USA 106:8107–8112. doi: 10.1073/pnas.0811875106 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Wiedenmann J, Ivanchenko S, Oswald F et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910. doi: 10.1073/pnas.0403668101 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456. doi: 10.1126/science.1232251 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mathew H. Horrocks
    • 1
  • Matthieu Palayret
    • 1
  • David Klenerman
    • 1
  • Steven F. Lee
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations