Histochemistry and Cell Biology

, Volume 142, Issue 1, pp 61–67 | Cite as

Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy

  • Patrick Müller
  • Niels A. Lemmermann
  • Rainer Kaufmann
  • Manuel Gunkel
  • Daniel Paech
  • Georg Hildenbrand
  • Rafaela Holtappels
  • Christoph Cremer
  • Michael Hausmann
Original Paper


Novel approaches of localization microscopy have opened new insights into the molecular nano-cosmos of cells. We applied a special embodiment called spectral position determination microscopy (SPDM) that has the advantage to run with standard fluorescent dyes or proteins under standard preparation conditions. Pointillist images with a resolution in the order of 10 nm can be obtained by SPDM. Therefore, vector pEYFP-m164, encoding the murine cytomegalovirus glycoprotein gp36.5/m164 fused to enhanced yellow fluorescent protein, was transiently transfected into COS-7 cells. This protein shows exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane. The molecular positions of gp36.5/m164 were visualized and determined by SPDM imaging. From the position point patterns of the protein molecules, their arrangements were quantified by next neighbour distance analyses. Three different structural arrangements were discriminated: (a) a linear distribution along the membrane, (b) a highly structured distribution in the ER, and (c) a homogenous distribution in the cellular cytoplasm. The results indicate that the analysis of next neighbour distances on the nano-scale allows the identification and discrimination of different structural arrangements of molecules within their natural cellular environment.


Spectral position determination microscopy Single molecule localization microscopy Super-resolution gp36.5/m164 glycoprotein Murine cytomegalovirus Nano-distance measurements Spatial structures 



The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (German Research Council) to C.C., and of the Bundesministerium für Bildung und Forschung (Federal Ministry for Education and Research) to M.H., R.H. was supported by the Deutsche Forschungsgemeinschaft, Collaborative Research Centre (SFB) 490 (TP-E3) and the intramural funding in program IFF-I of the University Medical Center, Mainz, Germany. N.A.L. received intramural funding in the young investigator program MAIFOR of the University Medical Center, Mainz, Germany. The authors thank Udo Birk, IMB, Mainz, for technical contributions in the development of the SPDM instrumentation.


  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung (Contributions to the theory of the microscope and microscopic observation). Archiv f. mikroskopische Anatomie 9:411–468Google Scholar
  2. Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16:64–72PubMedCrossRefGoogle Scholar
  3. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino J, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedCrossRefGoogle Scholar
  4. Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, von Ketteler A, Lemmer P, Hausmann M, Heermann DW, Cremer C (2010) Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J 99:1358–1367PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cremer C, Masters BR (2013) Resolution enhancement techniques in microscopy. Eur Phys J H38:281–344Google Scholar
  6. Cremer C, Kaufmann R, Gunkel M, Pres S, Weiland Y, Müller P, Ruckelshausen T, Lemmer P, Geiger F, Degenhard S, Wege C, Lemmermann NA, Holtappels R, Strickfaden H, Hausmann M (2011) Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol J 6:1037–1051PubMedCrossRefGoogle Scholar
  7. Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534PubMedCrossRefGoogle Scholar
  8. Duarte MF, Eldar YC (2011) Structured compressed sensing: from theory to applications. IEEE Trans Signal Process 59:4053–4085CrossRefGoogle Scholar
  9. Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels R (2012) Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201:527–539PubMedCrossRefGoogle Scholar
  10. Esa A, Edelmann P, Kreth G, Trakhtenbrot L, Amariglio N, Rechavi G, Hausmann M, Cremer C (2000) Three-dimensional spectral precision distance microscopy of chromatin nano-structures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome. J Microsc 199:96–105PubMedCrossRefGoogle Scholar
  11. Falk M, Hausmann M, Lukášová E, Biswas A, Hildenbrand G, Davídková M, Krasavin E, Kleibl Z, Falková I, Ježková L, Štefančíková L, Ševčík J, Hofer M, Bačíková A, Matula P, Boreyko A, Vachelová J, Michaelidisová A, Kozubek S (2014) Giving OMICS spatiotemporal dimensions by challenging microscopy: from functional networks to structural organization of cell nuclei elucidating mechanisms of complex radiation damage response and chromatin repair—part B (Structuromics). Crit Rev Eukaryot Gene Expr (in press) Google Scholar
  12. Fölling J, Bossi M, Bock H, Medda R, Wurm C, Hein B, Jakobs S, Eggeling C, Hell S (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945PubMedCrossRefGoogle Scholar
  13. Grüll F, Kirchgessner M, Kaufmann R, Hausmann M, Kebschull U (2011) Accelerating image analysis for localization microscopy with FPGAs. Proceedings of 21st international conference on field programmable logic and applications, Chania, Kreta 1–5 Google Scholar
  14. Grunzke R, Müller-Pfefferkorn R, Jäkel R, Starek J, Hardt M, Hartmann V, Potthoff J, Hesser J, Kepper K, Hausmann M, Gesing S, Kindermann S (2014) Device-driven metadate management solution for scientific big data use cases. IEEE Proc PDP (in press)Google Scholar
  15. Hausmann M, Müller P, Kaufmann R, Cremer C (2013) Entering the nano-cosmos of the cell by means of spatial position determination microscopy (SPDM): implications for medical diagnostics and radiation research. IFMBE Proc 38:93–95CrossRefGoogle Scholar
  16. Heilemann M, Herten DP, Heintzmann R, Cremer C, Mueller CP, Tinnefeld P, Weston KD, Wolfrum J, Sauer M (2002) High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal Chem 74:3511–3517PubMedCrossRefGoogle Scholar
  17. Hendrix J, Flors C, Dedecker P, Hofkens J, Engelborghs Y (2008) Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94:4103–4113PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272PubMedCentralPubMedCrossRefGoogle Scholar
  19. Holtappels R, Grzimek NKA, Simon CO, Thomas D, Dreis D, Reddehase MJ (2002a) Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 76:6044–6053PubMedCentralPubMedCrossRefGoogle Scholar
  20. Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002b) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164PubMedCentralPubMedCrossRefGoogle Scholar
  21. Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008a) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796PubMedCentralPubMedCrossRefGoogle Scholar
  22. Holtappels R, Thomas D, Janda J, Schenk S, Reddehase MJ, Geginat G (2008b) Adoptive CD8 T cell control of pathogens can not be improved by combining protective epitope specificities. J Infect Dis 197:622–629PubMedCrossRefGoogle Scholar
  23. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kaufmann R (2011) Entwicklung quantitativer Analysemethoden in der Lokalisationsmikroskopie. Inaugural-Dissertation, Faculty of Natural Sciences. University of HeidelbergGoogle Scholar
  25. Kaufmann R, Lemmer P, Gunkel M, Weiland Y, Müller P, Hausmann M, Baddeley D, Amberger R, Cremer C (2009) SPDM - single molecule superresolution of cellular nanostructures. Proc SPIE 7185:71850J1–71850J19CrossRefGoogle Scholar
  26. Kaufmann R, Müller P, Hildenbrand G, Hausmann M, Cremer C (2011) Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy. J Microsc 242:46–54PubMedCrossRefGoogle Scholar
  27. Kaufmann R, Piontek J, Grüll F, Kirchgessner M, Rossa J, Wolburg H, Blasig IE, Cremer C (2012) Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PLoS One 7:e31128PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) SPDM—light microscopy with single molecule resolution at the nanoscale. Appl Phys B 93:1–12CrossRefGoogle Scholar
  29. Lemmer P, Gunkel M, Weiland Y, Müller P, Baddeley D, Kaufmann R, Urich A, Eipel H, Amberger R, Hausmann M, Cremer C (2009) Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10 nm range. J Microsc 235:163–171PubMedCrossRefGoogle Scholar
  30. Müller P, Schmitt E, Jacob A, Hoheisel J, Kaufmann R, Cremer C, Hausmann M (2010) COMBO-FISH enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci. Int J Mol Sci 11:4094–4105PubMedCentralPubMedCrossRefGoogle Scholar
  31. Müller P, Weiland Y, Kaufmann R, Gunkel M, Hillebrandt S, Cremer C, Hausmann M (2012) Analysis of fluorescent nanostructures in biological systems by means of spectral position determination microscopy (SPDM). In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology, vol 1. Formatex Research Center Badajoz, Spain, pp 3–12Google Scholar
  32. Nauerth M, Weißbrich B, Knall R, Franz T, Dössinger G, Bet J, Paszkiewicz PJ, Pfeifer L, Bunse M, Uckert W, Holtappels R, Gillert-Marien D, Neuenhahn M, Krackhardt A, Reddehase MJ, Riddell SR, Busch DH (2013) TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci Transl Med 5(192):192ra87. doi:10.1126/scitranslmed.3005958 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Rayleigh L (1896) On the theory of optical images, with special reference to the microscope. Philos Mag 42:167–195CrossRefGoogle Scholar
  34. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795PubMedCentralPubMedCrossRefGoogle Scholar
  35. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175PubMedCentralPubMedCrossRefGoogle Scholar
  36. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44:7085–7094PubMedCrossRefGoogle Scholar
  37. Zimmermann T, Rietdorf J, Girod A, Georget V, Pepperkok R (2002) Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett 531:245–249PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patrick Müller
    • 1
  • Niels A. Lemmermann
    • 2
  • Rainer Kaufmann
    • 1
    • 6
  • Manuel Gunkel
    • 1
    • 7
  • Daniel Paech
    • 1
    • 8
  • Georg Hildenbrand
    • 1
    • 3
  • Rafaela Holtappels
    • 2
  • Christoph Cremer
    • 1
    • 4
    • 5
  • Michael Hausmann
    • 1
  1. 1.Kirchhoff-Institute for PhysicsHeidelbergGermany
  2. 2.Institute for VirologyUniversity Medical Center MainzMainzGermany
  3. 3.Department of Radiation OncologyUniversity Medical Center MannheimMannheimGermany
  4. 4.Institute for Pharmacy and Molecular BiotechnologyUniversity HeidelbergHeidelbergGermany
  5. 5.Institute of Molecular Biology (IMB)MainzGermany
  6. 6.Division of Structural Biology, Wellcome Trust Centre for Human Genetics and Department of BiochemistryUniversity of OxfordOxfordUK
  7. 7.BioquantUniversity of HeidelbergHeidelbergGermany
  8. 8.Division of NeuroradiologyUniversity Medical Center HeidelbergHeidelbergGermany

Personalised recommendations