Skip to main content

Advertisement

Log in

Subcellular localization of NAPE-PLD and DAGL-α in the ventromedial nucleus of the hypothalamus by a preembedding immunogold method

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The hypothalamus and the endocannabinoid system are important players in the regulation of energy homeostasis. In a previous study, we described the ultrastructural distribution of CB1 receptors in GABAergic and glutamatergic synaptic terminals of the dorsomedial region of the ventromedial nucleus of the hypothalamus (VMH). However, the specific localization of the enzymes responsible for the synthesis of the two main endocannabinoids in the hypothalamus is not known. The objective of this study was to investigate the precise subcellular distribution of N-arachidonoylphospatidylethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGL-α) in the dorsomedial VMH of wild-type mice by a high resolution immunogold electron microscopy technique. Knock-out mice for each enzyme were used to validate the specificity of the antibodies. NAPE-PLD was localized presynaptically and postsynaptically but showed a preferential distribution in dendrites. DAGL-α was mostly postsynaptic in dendrites and dendritic spines. These anatomical results contribute to a better understanding of the endocannabinoid modulation in the VMH nucleus. Furthermore, they support the idea that the dorsomedial VMH displays the necessary machinery for the endocannabinoid-mediated modulation of synaptic transmission of brain circuitries that regulate important hypothalamic functions such as feeding behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basavarajappa BS (2007) Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 14:237–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellocchio L, Lafenêtre P, Cannich A, Cota D, Puente N, Grandes P, Chaouloff F, Piazza PV, Marsicano G (2010) Bimodal control of stimulated food intake by the endocannabinoid system. Nat Neurosci 13:281–283

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR (2002) Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 26:393–428

    Article  PubMed  Google Scholar 

  • Chávez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13(12):1511–1518

    Article  PubMed Central  PubMed  Google Scholar 

  • Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL (1998) Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 63(8):PL113–PL117

    Google Scholar 

  • Cota D, Genghini S, Pasquali R, Pagotto U (2003) Antagonizing the cannabinoid receptor type 1: a dual way to fight obesity. J Endocrinol Invest 26(10):1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Cota D, Woods S (2005) The role of the endocannabinoid system in the regulation of energy homeostasis. Curr Opin Endocrinol Diabetes 12:338–351

    Article  Google Scholar 

  • Cristino L, Starowicz K, De Petrocellis L, Morishita J, Ueda N, Guglielmotti V, Di Marzo V (2008) Immunohistochemical localization of anabolic and catabolic enzymes for anandamide and other putative endovanilloids in the hippocampus and cerebellar cortex of the mouse brain. Neuroscience 151:955–968

    Article  CAS  PubMed  Google Scholar 

  • De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharmacol 141:765–774

    Article  PubMed Central  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8:585–589

    Article  PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L, Bisogno T (2001) Endocannabinoids Part I: molecular basis of endocannabinoid formation, action and inactivation and development of selective inhibitors. Expert Opin Ther Targets 5(2):241–265

    Article  PubMed  Google Scholar 

  • Egertová M, Giang DK, Cravatt BF, Elphick MR (1998) A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc Biol Sci 265:2081–2085

    Article  PubMed Central  PubMed  Google Scholar 

  • Egertová M, Cravatt BF, Elphick MR (2003) Comparative analysis of fatty acid amide hydrolase and cb(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119:481–496

    Article  PubMed  Google Scholar 

  • Egertová M, Simon GM, Cravatt BF, Elphick MR (2008) Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: a new perspective on N-acylethanolamines as neural signaling molecules. J Comp Neurol 506:604–615

    Article  PubMed  Google Scholar 

  • Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, Freund TF (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458

    Article  CAS  PubMed  Google Scholar 

  • Hegyi Z, Holló K, Kis G, Mackie K, Antal M (2012) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. Glia 60:1316–1329

    Article  PubMed Central  PubMed  Google Scholar 

  • Jamshidi N, Taylor DA (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 134:1151–1154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380

    Article  CAS  PubMed  Google Scholar 

  • Katona I, Urbán GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26:5628–5637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KW, Jo YH, Zhao L, Stallings NR, Chua SC Jr et al (2008) Steroidogenic factor 1 regulates expression of the cannabinoid receptor 1 in the ventromedial hypothalamic nucleus. Mol Endocrinol 22:1950–1961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136:550–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ (2007) Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2:e709

    Article  PubMed Central  PubMed  Google Scholar 

  • Leung D, Saghatelian A, Simon GM, Cravatt BF (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45:4720–4726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18:27–37

    Article  CAS  PubMed  Google Scholar 

  • McClellan KM, Parker KL, Tobet S (2006) Development of the ventromedial nucleus of the hypothalamus. Front Neuroendocrinol 27:193–209

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Morishita J, Okamoto Y, Tsuboi K, Ueno M, Sakamoto H, Maekawa N, Ueda N (2005) Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J Neurochem 94:753–762

    Article  CAS  PubMed  Google Scholar 

  • Nyilas R, Dudok B, Urbán GM, Mackie K, Watanabe M, Cravatt BF, Freund TF, Katona I (2008) Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. J Neurosci 28:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100

    Article  CAS  PubMed  Google Scholar 

  • Puente N, Cui Y, Lassalle O, Lafourcade M, Georges F, Venance L, Grandes P, Manzoni OJ (2011) Polymodal activation of the endocannabinoid system in the extended amygdala. Nat Neurosci 14:1542–1547

    Article  CAS  PubMed  Google Scholar 

  • Reguero L, Puente N, Elezgarai I, Mendizabal-Zubiaga J, Canduela MJ, Buceta I, Ramos A, Suárez J, de Fonseca FR, Marsicano G, Grandes P (2011) GABAergic and cortical and subcortical glutamatergic axon terminals contain CB1 cannabinoid receptors in the ventromedial nucleus of the hypothalamus. PLoS ONE 6:e26167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sternson SM, Shepherd GM, Friedman JM (2005) Topographic mapping of VMH –> arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8(10):1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085

    Article  PubMed  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoyl-glycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65:320–327

    Article  CAS  PubMed  Google Scholar 

  • Tanimura A, Uchigashima M, Yamazaki M, Uesaka N, Mikuni T, Abe M, Hashimoto K, Watanabe M, Sakimura K, Kano M (2012) Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc Natl Acad Sci USA 109:12195–12200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M (2007) Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci 27:3663–3676

    Article  CAS  PubMed  Google Scholar 

  • Uchigashima M, Yamazaki M, Yamasaki M, Tanimura A, Sakimura K, Kano M, Watanabe M (2011) Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci 31:7700–7714

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Fukaya M, Uchigashima M, Miura E, Kamiya H, Kano M, Watanabe M (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 26:4740–4751

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Uchigashima M, Yamasaki M, Katona I, Yamazaki M, Sakimura K, Kano M, Yoshioka M, Watanabe M (2011) Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. Proc Natl Acad Sci USA 108:3059–3064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by The Basque Country Government Grant BCG IT764-13; Ministerio de Economía y Competitividad (MINECO) Grant BFU2012-33334; University of the Basque Country UPV/EHU UFI11/41 and Red de Transtornos Adictivos (RTA)—Instituto de Salud Carlos III grant RD12/0028/0004. L. Reguero was supported by a Postdoctoral Specialization Contract from the University of the Basque Country UPV/EHU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Grandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reguero, L., Puente, N., Elezgarai, I. et al. Subcellular localization of NAPE-PLD and DAGL-α in the ventromedial nucleus of the hypothalamus by a preembedding immunogold method. Histochem Cell Biol 141, 543–550 (2014). https://doi.org/10.1007/s00418-013-1174-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1174-x

Keywords

Navigation