Advertisement

Histochemistry and Cell Biology

, Volume 140, Issue 6, pp 611–621 | Cite as

Human mesenchymal progenitor cells derived from alveolar bone and human bone marrow stromal cells: a comparative study

  • Karin Pekovits
  • Julia Maria Kröpfl
  • Ingeborg Stelzer
  • Michael Payer
  • Heinz Hutter
  • Gottfried Dohr
Original Paper

Abstract

The aim of the present study was to evaluate the potential of intraoral harvested alveolar bone as an alternative source of multipotent mesenchymal stromal cells for future applications in oral and maxillofacial tissue engineering. Explant cultures were established from 20 alveolar bone samples harvested from the oblique line immediately before wisdom tooth removal. Morphology and proliferation characteristics of the in vitro expanded cells, referred to as human alveolar bone-derived cells (hABDCs), were studied using phase-contrast microscopy. Immunocytochemical analysis of their surface marker expression was conducted using monoclonal antibodies defining mesenchymal stromal cells. To evaluate their multilineage differentiation potential, hABDCs were induced to differentiate along the osteogenic, adipogenic, and chondrogenic lineage and compared to bone marrow mesenchymal stromal cells (hBMSCs) on mRNA and protein levels applying RT-PCR and cytochemical staining methods. hABDCs showed typical morphological characteristics comparable to those of hBMSCs such as being mononuclear, fibroblast-like, spindle-shaped, and plastic adherent. Immunophenotypically, cells were positive for CD105, CD90, and CD73 while negative for CD45, CD34, CD14, CD79α, and HLA-DR surface molecules, indicating an antigen expression pattern considered typical for multipotent mesenchymal stromal cells. As evidenced by RT-PCR and cytochemistry, hABDCs showed multilineage differentiation and similar chondrogenic and osteogenic differentiation potentials when compared to hBMSCs. Our findings demonstrate that human alveolar bone contains mesenchymal progenitor cells that can be isolated and expanded in vitro and are capable of trilineage differentiation, providing a reservoir of multipotent mesenchymal cells from an easily accessible tissue source.

Keywords

Alveolar bone-derived cell Multipotent mesenchymal progenitor cell Trilineage differentiation hBMSC 

Notes

Acknowledgments

The authors would like to thank Mr. Rudolf Schmied for his excellent technical assistance and Dipl. Ing. Amin El-Heliebi and Dr. Martin Gauster for help in DNA preparation and analysis. Special thanks also go to Dr. Andreas Reinisch for providing hBMSCs.

References

  1. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768PubMedCrossRefGoogle Scholar
  2. Aubin JE (1998) Advances in the osteoblast lineage. Biochem Cell Biol 76:899–910PubMedCrossRefGoogle Scholar
  3. Aubin JE, Turksen K (1996) Monoclonal antibodies as tools for studying the osteoblast lineage. Microsc Res Tech 33:128–140PubMedCrossRefGoogle Scholar
  4. Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R (2003) Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp 249:133–143, discussion 143-7, 170-4, 239-41Google Scholar
  5. Cicconetti A, Sacchetti B, Baetoli A, Michienzi S, Corsi A, Funari A, Robey PG, Bianco P, Riminucci M (2007) Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:618.e1–618.12Google Scholar
  6. Clausen C, Hermund NU, Donatsky O, Nielsen H (2006) Characterization of human bone cells derived from the maxillary alveolar ridge. Clin Oral Implants Res 17:533–540PubMedCrossRefGoogle Scholar
  7. De Assis AF, Beloti MM, Crippa GE, De Oliveira PT, Morra M, Rosa AL (2009) Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface. Clin Oral Implants Res 20:240–246PubMedCrossRefGoogle Scholar
  8. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309:314–317PubMedCrossRefGoogle Scholar
  9. Ding G, Liu Y, Wang W, Wei F, Liu D, Fan Z, An Y, Zhang C, Wang S (2010) Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells 28:1829–1838PubMedCrossRefGoogle Scholar
  10. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  11. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, Denbesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535PubMedCrossRefGoogle Scholar
  12. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular Therapy (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395PubMedCrossRefGoogle Scholar
  13. Kato T, Hattori K, Deguchi T, Katsube Y, Matsumoto T, Ohgushi H, Numabe Y (2011) Osteogenic potential of rat stromal cells derived from periodontal ligament. J Tissue Eng Regen Med 5:798–805PubMedCrossRefGoogle Scholar
  14. Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073PubMedCrossRefGoogle Scholar
  15. Lohberger B, Payer M, Rinner B, Kaltenegger H, Wolf E, Schallmoser K, Strunk D, Rohde E, Berghold A, Pekovits K, Wildburger A, Leithner A, Windhager R, Jakse N (2013) Tri-lineage potential of intraoral tissue-derived mesenchymal stromal cells. J Craniomaxillofac Surg 41:110–118PubMedCrossRefGoogle Scholar
  16. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Miyazaki K, Shimizu M, Bhawal UK, Tsuji K, Nakamura K, Kato Y (2005) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Min Res 20:399–409CrossRefGoogle Scholar
  17. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20:1060–1069PubMedCrossRefGoogle Scholar
  18. Payer M, Lohberger B, Stadelmeyer E, Bartmann C, Windhager R, Jakse N (2010) Behaviour of multipotent maxillary bone-derived cells on beta-tricalcium phosphate and highly porous bovine bone mineral. Clin Oral Implants Res 21:699–708PubMedCrossRefGoogle Scholar
  19. Pekovits K, Wildburger A, Payer M, Hutter H, Jakse N, Dohr G (2012) Evaluation of graft cell viability-efficacy of piezoelectric versus manual bone scraper technique. J Oral Maxillofac Surg 70:154–162PubMedCrossRefGoogle Scholar
  20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  21. Pittenger MF, Mosca JD, McIntosh KR (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251:3–11PubMedCrossRefGoogle Scholar
  22. Rodriguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramirez MC, Blanquer M, Marin N, Martinez S, Moraleda JM (2011) Mesenchymal stem cells derived from dental tissues. Int Endod J 44:800–806PubMedCrossRefGoogle Scholar
  23. Rosa AL, Crippa GE, De Oliveira PT, Taba M Jr, Levebvre LP, Beloti MM (2009) Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy. Clin Oral Implants Res 20:472–481PubMedCrossRefGoogle Scholar
  24. Seo BM, Miura M, Gronthos S, Bartold PM, Bartouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155PubMedCrossRefGoogle Scholar
  25. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8:191–199PubMedCrossRefGoogle Scholar
  26. Song L, Young NJ, Webb NE, Tuan RS (2005) Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells Dev 14:712–721PubMedCrossRefGoogle Scholar
  27. Sottile V, Halleux C, Bassilana F, Keller H, Seuwen K (2002) Stem cell characteristics of human trabecular bone-derived cells. Bone 30:699–704PubMedCrossRefGoogle Scholar
  28. Springer IN, Terheyden H, Geiss S, Harle F, Hedderich J, Acil Y (2004) Particulated bone grafts–effectiveness of bone cell supply. Clin Oral Implants Res 15:205–212PubMedCrossRefGoogle Scholar
  29. Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003) Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21:681–693PubMedCrossRefGoogle Scholar
  30. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206PubMedCrossRefGoogle Scholar
  31. Yang Y, Rossi FM, Putnins EE (2010) Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials 31:8574–8582PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karin Pekovits
    • 1
  • Julia Maria Kröpfl
    • 1
  • Ingeborg Stelzer
    • 2
  • Michael Payer
    • 3
  • Heinz Hutter
    • 1
  • Gottfried Dohr
    • 1
  1. 1.Institute of Cell Biology, Histology and Embryology, Center of Molecular MedicineMedical University of GrazGrazAustria
  2. 2.Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
  3. 3.Department of Dentistry and Maxillofacial SurgeryMedical University of GrazGrazAustria

Personalised recommendations