Histochemistry and Cell Biology

, Volume 140, Issue 3, pp 327–339 | Cite as

Golgi tubules: their structure, formation and role in intra-Golgi transport

  • Emma Martínez-Alonso
  • Mónica Tomás
  • José A. Martínez-Menárguez
Review

Abstract

Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.

Keywords

Golgi complex  Tubules  Intra-Golgi transport  Golgi ribbon  COPI  Lipids 

Notes

Acknowledgments

We thank Dr Vivero-Salmerón for some of the images of Fig. 1. This work has been supported by grants from the Ministerio de Ciencia e Innovación (Spain) Consolider COAT CSD2009-00016) and Fundación Séneca de la Comunidad Autónoma de la Región de Murcia (04542/GERM/06) to JAM-M.

References

  1. Antonny B, Huber I, Paris S, Chabre M, Cassel D (1997) Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J Biol Chem 272:30848–30851PubMedCrossRefGoogle Scholar
  2. Asp L, Kartberg F, Fernandez-Rodriguez J, Smedh M, Elsner M, Laporte F, Bárcena M, Jansen KA, Valentijn JA, Koster AJ, Bergeron JJ, Nilsson T (2009) Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol Biol Cell 20:780–790PubMedCrossRefGoogle Scholar
  3. Bechler ME, Doody AM, Racoosin E, Lin L, Lee KH, Brown WJ (2010) The phospholipase complex PAFAH Ib regulates the functional organization of the Golgi complex. J Cell Biol 190:45–53PubMedCrossRefGoogle Scholar
  4. Ben-Tekaya H, Kahn RA, Hauri HP (2010) ADP ribosylation factors 1 and 4 and group VIA phospholipase A2 regulate morphology and intraorganellar traffic in the endoplasmic reticulum-Golgi intermediate compartment. Mol Biol Cell 21:4130–4140PubMedCrossRefGoogle Scholar
  5. Beznoussenko GV, Dolgikh VV, Seliverstova EV, Semenov PB, Tokarev YS, Trucco A, Micaroni M, Di Giandomenico D, Auinger P, Senderskiy IV, Skarlato SO, Snigirevskaya ES, Komissarchik YY, Pavelka M, De Matteis MA, Luini A, Sokolova YY, Mironov AA (2007) Analogs of the Golgi complex in microsporidia: structure and avesicular mechanisms of function. J Cell Sci 120:1288–1298PubMedCrossRefGoogle Scholar
  6. Bigay J, Gounon P, Robineau S, Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563–566PubMedCrossRefGoogle Scholar
  7. Bonfanti L, Mironov AA Jr, Martínez-Menárguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:993–1003PubMedCrossRefGoogle Scholar
  8. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166PubMedCrossRefGoogle Scholar
  9. Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221PubMedCrossRefGoogle Scholar
  10. Campadelli G, Brandimarti R, Di Lazzaro C, Ward PL, Roizman B, Torrisi MR (1993) Fragmentation and dispersal of Golgi proteins and redistribution of glycoproteins and glycolipids processed through the Golgi apparatus after infection with herpes simplex virus 1. Proc Natl Acad Sci USA 90:2798–2802PubMedCrossRefGoogle Scholar
  11. Clermont Y, Rambourg A, Hermo L (1994) Connections between the various elements of the cis- and mid-compartments of the Golgi apparatus of early rat spermatids. Anat Rec 240:469–480PubMedCrossRefGoogle Scholar
  12. Clermont Y, Rambourg A, Hermo L (1995) Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anat Rec 242:289–301PubMedCrossRefGoogle Scholar
  13. Cluett EB, Wood SA, Banta M, Brown WJ (1993) Tubulation of Golgi membranes in vivo and in vitro in the absence of brefeldin A. J Cell Biol 120:15–24PubMedCrossRefGoogle Scholar
  14. Cooper MS, Cornell-Bell AH, Chernjavsky A, Dani JW, Smith SJ (1990) Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-golgi elements into a reticulum. Cell 61:135–145PubMedCrossRefGoogle Scholar
  15. Corda D, Hidalgo Carcedo C, Bonazzi M, Luini A, Spanò S (2002) Molecular aspects of membrane fission in the secretory pathway. Cell Mol Life Sci 59:1819–1832PubMedCrossRefGoogle Scholar
  16. Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1630PubMedCrossRefGoogle Scholar
  17. Cruz-García D, Díaz-Ruiz A, Rabanal-Ruiz Y, Peinado JR, Gracia-Navarro F, Castaño JP, Montero-Hadjadje M, Tonon MC, Vaudry H, Anouar Y, Vázquez-Martínez R, Malagón MM (2012) The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells. Biochem J 443:387–396PubMedCrossRefGoogle Scholar
  18. de Figueiredo P, Drecktrah D, Polizotto RS, Cole NB, Lippincott-Schwartz J, Brown WJ (2000) Phospholipase A2 antagonists inhibit constitutive retrograde membrane traffic to the endoplasmic reticulum. Traffic 1:504–511PubMedCrossRefGoogle Scholar
  19. Diao A, Rahman D, Pappin DJC, Lucocq J, Lowe M (2003) The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol 160:201–212PubMedCrossRefGoogle Scholar
  20. Drecktrah D, Chambers K, Racoosin EL, Cluett EB, Gucwa A, Jackson B, Brown WJ (2003) Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking. Mol Biol Cell 14:3459–3469PubMedCrossRefGoogle Scholar
  21. Fan JY, Roth J, Zuber C (2003) Ultrastructural analysis of transitional endoplasmic reticulum and pre-Golgi intermediates: a highway for cars and trucks. Histochem Cell Biol 120:455–463PubMedCrossRefGoogle Scholar
  22. Fan JY, Roth J, Zuber C (2007) Expression of mutant Ins2C96Y results in enhanced tubule formation causing enlargement of pre-Golgi intermediates of CHO cells. Histochem Cell Biol 128:161–173PubMedCrossRefGoogle Scholar
  23. Fan J, Hu Z, Zeng L, Lu W, Tang X, Zhang J, Li T (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neuroscience 26:523–534CrossRefGoogle Scholar
  24. Feng Y, Yu S, Lasell TK, Jadhav AP, Macia E, Chardin P, Melancon P, Roth M, Mitchison T, Kirchhausen T (2003) Exo1: a new chemical inhibitor of the exocytic pathway. Proc Natl Acad Sci USA 100:6469–6474PubMedCrossRefGoogle Scholar
  25. Fernandez-Ulibarri I, Vilella M, Lazaro-Dieguez F, Sarri E, Martinez SE, Jimenez N, Claro E, Merida I, Burger KN, Egea G (2007) Diacylglycerol is required for the formation of COPI vesicles in the Golgito-ER transport pathway. Mol Biol Cell 18:3250–3263PubMedCrossRefGoogle Scholar
  26. Garcia-Mata R, Szul T, Alvarez C, Sztul E (2003) ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum—Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol Biol Cell 14:2250–2261PubMedCrossRefGoogle Scholar
  27. Geuze HJ, Morré DJ (1991) Trans-Golgi reticulum. J Electron Microsc Tech 17:24–34PubMedCrossRefGoogle Scholar
  28. Glick BS, Luini A (2011) Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 3(11):a005215PubMedCrossRefGoogle Scholar
  29. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6:393–404PubMedCrossRefGoogle Scholar
  30. Goyal U, Blackstone C (2013) Untangling the web: mechanisms underlying ER network formation. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2013.04.009
  31. Grassé PP (1957) Ultrastructure, polarity and reproduction of Golgi apparatus. C R de Acad Sci 245:1278–1281Google Scholar
  32. Griffiths G (2000) Gut thoughts on the Golgi complex. Traffic 1:738–745PubMedCrossRefGoogle Scholar
  33. Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234:438–443PubMedCrossRefGoogle Scholar
  34. Gutierrez-Martinez E, Fernandez-Ulibarri I, Lazaro-Dieguez F, Johannes L, Pyne S, Sarri E, Egea G (2013) Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci. doi: 10.1242/jcs.117705 PubMedGoogle Scholar
  35. Ha KD, Clarke BA, Brown WJ (2012) Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim Biophys Acta 1821:1078–1088PubMedCrossRefGoogle Scholar
  36. Haas AK, Yoshimura S, Stephens DJ, Preisinger C, Fuchs E, Barr FA (2007) Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 120:2997–3010PubMedCrossRefGoogle Scholar
  37. Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A, Siedler F, Brinkmann V, Meyer TF (2009) Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–735PubMedCrossRefGoogle Scholar
  38. Holappa K, Muñoz MT, Egea G, Kellokumpu S (2004) The AE2 anion exchanger is necessary for the structural integrity of the Golgi apparatus in mammalian cells. FEBS Lett 564:97–103PubMedCrossRefGoogle Scholar
  39. Hsu VW, Shah N, Klausner RD (1992) A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1. Cell 69:625–635PubMedCrossRefGoogle Scholar
  40. Jackson CL, Casanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10:60–67PubMedCrossRefGoogle Scholar
  41. Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C, Schekman R, Rape M (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:495–500PubMedCrossRefGoogle Scholar
  42. Judson BL, Brown WJ (2009) Assembly of an intact Golgi complex requires phospholipase A2 (PLA2) activity, membrane tubules, and dynein-mediated microtubule transport. Biochem Biophys Res Commun 389:473–477PubMedCrossRefGoogle Scholar
  43. Kim HS, Takahashi M, Matsuo K, Ono Y (2007) Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex. Gen Cell 12:421–434CrossRefGoogle Scholar
  44. Kirchhausen T (2000) Clathrin. Annu Rev Biochem 69:699–727PubMedCrossRefGoogle Scholar
  45. Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080PubMedCrossRefGoogle Scholar
  46. Klumperman J (2011) Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 3:a005181. doi: 10.1101/cshperspect.a005181
  47. Koegler E, Bonnon C, Waldmeier L, Mitrovic S, Halbeisen R, Hauri HP (2010) p28, a novel ERGIC/cis Golgi protein, required for Golgi ribbon formation. Traffic 11:70–89PubMedCrossRefGoogle Scholar
  48. Kooijman EE, Chupin V, Fuller NL, Kozlov MM, de Kruijff B, Burger KN, Rand PR (2005) Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44:2097–2102PubMedCrossRefGoogle Scholar
  49. Krauss M, Jia JY, Roux A, Beck R, Wieland FT, De Camilli P, Haucke V (2008) Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem 283:27717–27723PubMedCrossRefGoogle Scholar
  50. Kreis TE (1992) Regulation of vesicular and tubular membrane traffic of the Golgi complex by coat proteins. Curr Opin Cell Biol 4:609–615PubMedCrossRefGoogle Scholar
  51. Kudlyk T, Willett R, Pokrovskaya ID, Lupashin V (2013) COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Traffic 14:194–204PubMedCrossRefGoogle Scholar
  52. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149PubMedCrossRefGoogle Scholar
  53. Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 13:2810–2825PubMedCrossRefGoogle Scholar
  54. Lee TH, Linstedt AD (1999) Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. Mol Biol Cell 10:1445–1462PubMedCrossRefGoogle Scholar
  55. Letourneur F, Gaynor EC, Hennecke S, Démollière C, Duden R, Emr SD, Riezman H, Cosson P (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–11207PubMedCrossRefGoogle Scholar
  56. Liljedahl M, Maeda Y, Colanzi A, Ayala I, Van Lint J, Malhotra V (2001) Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104:409–420PubMedCrossRefGoogle Scholar
  57. Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri HP, Yuan LC, Klausner RD (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60:821–836PubMedCrossRefGoogle Scholar
  58. Liu S, Storrie B (2012) Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 69:4093–4106PubMedCrossRefGoogle Scholar
  59. Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS (2006) Golgi maturation visualized in living yeast. Nature 441:1002–1006PubMedCrossRefGoogle Scholar
  60. Lowe M, Kreis TE (1998) Regulation of membrane traffic in animal cells by COPI. Biochim Biophys Acta 1404:53–66PubMedCrossRefGoogle Scholar
  61. Lucocq J (1992) Mimicking mitotic Golgi disassembly using okadaic acid. J Cell Sci 103:875–880PubMedGoogle Scholar
  62. Mardones GA, Snyder CM, Howell KE (2006) Cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules. Mol Biol Cell 17:525–538PubMedCrossRefGoogle Scholar
  63. Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130. Mol Biol Cell 18:1595–1608PubMedCrossRefGoogle Scholar
  64. Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101:5565–5570PubMedCrossRefGoogle Scholar
  65. Martinez-Alonso E, Ballesta J, Martinez-Menarguez JA (2007) Low-temperature- induced Golgi tubules are transient membranes enriched in molecules regulating intra-Golgi transport. Traffic 8:359–368PubMedCrossRefGoogle Scholar
  66. Martínez-Alonso E, Egea G, Ballesta J, Martínez-Menárguez JA (2005) Structure and dynamics of the Golgi complex at 15 degrees C: low temperature induces the formation of Golgi-derived tubules. Traffic 6:32–44PubMedCrossRefGoogle Scholar
  67. Martínez-Menárguez JA (2013) Intra-golgi transport: roles for vesicles, tubules, and cisternae. ISRN Cell Biol, vol 2013, Article ID 126731. doi: 10.1155/2013/126731
  68. Martinez-Menarguez JA, Geuze HJ, Slot JW, Klumperman J (1999) Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98:81–90PubMedCrossRefGoogle Scholar
  69. Martinez-Menárguez JA, Prekeris R, Oorschot VM, Scheller R, Slot JW, Geuze HJ, Klumperman J (2001) Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol 155:1213–1214PubMedCrossRefGoogle Scholar
  70. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010PubMedCrossRefGoogle Scholar
  71. Mironov AA, Beznoussenko GV (2011) Molecular mechanisms responsible for formation of Golgi ribbon. Histol Histopathol 26:117–133PubMedGoogle Scholar
  72. Mironov AA, Beznoussenko GV (2012) The kiss-and-run model of intra-Golgi transport. Int J Mol Sci 13:6800–6819PubMedCrossRefGoogle Scholar
  73. Mironov AA, Colanzi A, Polishchuk RS, Beznoussenko GV, Mironov AA Jr, Fusella A, Di Tullio G, Silletta MG, Corda D, De Matteis MA, Luini A (2004) Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments golgi non-compact tubular zones and inhibits intra-golgi transport. Eur J Cell Biol 83:263–279PubMedCrossRefGoogle Scholar
  74. Mollenhauer HH, Morré DJ (1998) The tubular network of the Golgi apparatus. Histochem Cell Biol 109:533–543PubMedCrossRefGoogle Scholar
  75. Mounier J, Boncompain G, Senerovic L, Lagache T, Chrétien F, Perez F, Kolbe M, Olivo-Marin JC, Sansonetti PJ, Sauvonnet N (2012) Shigella effector IpaB-induced cholesterol relocation disrupts the Golgi complex and recycling network to inhibit host cell secretion. Cell Host Microbe 12:381–389PubMedCrossRefGoogle Scholar
  76. Muppirala M, Gupta V, Swarup G (2011) Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi. Biol Cell 103:333–350PubMedCrossRefGoogle Scholar
  77. Naydenov NG, Harris G, Brown B, Schaefer KL, Das SK, Fisher PB, Ivanov A (2012) Loss of soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) induces epithelial cell apoptosis via down-regulation of Bcl-2 expression and disruption of the Golgi. J Biol Chem 287:5928–5941PubMedCrossRefGoogle Scholar
  78. Numata Y, Morimura T, Nakamura S, Hirano E, Kure S, Goto YI, Inoue K (2013) Depletion of molecular chaperones from the endoplasmic reticulum and fragmentation of the Golgi apparatus associated with pathogenesis in Pelizaeus-Merzbacher disease. J Biol Chem 288:7451–7466PubMedCrossRefGoogle Scholar
  79. Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46:171–184PubMedCrossRefGoogle Scholar
  80. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Söllner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–349PubMedCrossRefGoogle Scholar
  81. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–358PubMedCrossRefGoogle Scholar
  82. Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067PubMedCrossRefGoogle Scholar
  83. Pelham HR, Rothman JE (2000) The debate about transport in the Golgi-two sides of the same coin? Cell 102:713–719PubMedCrossRefGoogle Scholar
  84. Pfeffer SR (2010) How the Golgi works: a cisternal progenitor model. Proc Natl Acad Sci USA 107:19614–19618PubMedCrossRefGoogle Scholar
  85. Polishchuk RS, Capestrano M, Polishchuk EV (2009) Shaping tubular carriers for intracellular membrane transport. FEBS Lett 583:3847–3856PubMedCrossRefGoogle Scholar
  86. Polizotto RS, de Figueiredo P, Brown WL (1999) Stimulation of Golgi membrane tubulation and retrograde trafficking to the ER by phospholipase A(2) activating protein (PLAP) peptide. J Cell Biochem 74:670–683PubMedCrossRefGoogle Scholar
  87. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85PubMedCrossRefGoogle Scholar
  88. Puthenveedu MA, Linstedt AD (2001) Evidence that Golgi structure depends on a p115 activity that is independent of the vesicle tether components giantin and GM130. J Cell Biol 155:227–238PubMedCrossRefGoogle Scholar
  89. Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8:238–248PubMedCrossRefGoogle Scholar
  90. Quiner CA, Jackson WT (2010) Fragmentation of the Golgi apparatus provides replication membranes for human rhinovirus 1A. Virology 407:185–195PubMedCrossRefGoogle Scholar
  91. Rabouille C, Kondylis V (2007) Golgi ribbon unlinking: an organelle-based G2/M checkpoint. Cell Cycle 6:2723–2729PubMedCrossRefGoogle Scholar
  92. Ramabhadran V, Korobova F, Rahme GJ, Higgs HN (2011) Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol Biol Cell 22:4822–4833PubMedCrossRefGoogle Scholar
  93. Rambourg A, Clermont Y (1997) Three-dimensional structure of the Golgi apparatus in mammalian cells. In: Berger EG, Roth J (eds) The Golgi apparatus. Birkhäuser Verlag Basel, Switzerland, pp 37–61CrossRefGoogle Scholar
  94. Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, Pfeffer SR (2006) A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 17:4353–4363PubMedCrossRefGoogle Scholar
  95. Rendón WO, Martínez-Alonso E, Tomás M, Martínez-Martínez N, Martínez-Menárguez JA (2013) Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 139:671–684PubMedCrossRefGoogle Scholar
  96. Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruits γ-tubulin complexes to cis—Golgi membranes and is required for Golgi Gibbon formation. Cell 118:323–335PubMedCrossRefGoogle Scholar
  97. Rohde J, Emschermann F, Knittler MR, Rziha HJ (2012) Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi. BMC Vet Res 8:114PubMedCrossRefGoogle Scholar
  98. Romano JD, Sonda S, Bergbower E, Smith ME, Coppens I (2013) Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell 24:1974–1995Google Scholar
  99. Roth J, Taatjes DJ, Lucocq JM, Weinstein J, Paulson JC (1985) Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43:287–295PubMedCrossRefGoogle Scholar
  100. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci USA 99:5394–5539PubMedCrossRefGoogle Scholar
  101. Saito K, Chen M, Bard F, Chen S, Zhou H, Woodley D, Polischuk R, Schekman R, Malhotra V (2009) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:891–902PubMedCrossRefGoogle Scholar
  102. Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K, Malhotra V, Katada T (2011) cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell 22:2301–2308PubMedCrossRefGoogle Scholar
  103. Saka HA, Valdivia RH (2010) Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Curr Opin Microbiol 13:4–10PubMedCrossRefGoogle Scholar
  104. Salcedo-Sicilia L, Granell S, Jovic M, Sicart A, Mato E, Johannes L, Balla T, Egea G (2013) βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem 288:2157–2166PubMedCrossRefGoogle Scholar
  105. San Pietro E, Capestrano M, Polishchuk EV, DiPentima A, Trucco A, Zizza P, Mariggiò S, Pulvirenti T, Sallese M, Tete S, Mironov AA, Leslie CC, Corda D, Luini A, Polishchuk RS (2009) Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLoS Biol 7:e1000194PubMedCrossRefGoogle Scholar
  106. Schecterson LC, Hudson MP, Ko M, Philippidou P, Akmentin W, Wiley J, Rosenblum E, Chao MV, Halegoua S, Bothwell M (2010) Trk activation in the secretory pathway promotes Golgi fragmentation. Mol Cell Neurosci 43:403–413PubMedCrossRefGoogle Scholar
  107. Schmidt JA, Kalkofen DN, Donovan KW, Brown WJ (2010) A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking. Traffic 11:1530–1536PubMedCrossRefGoogle Scholar
  108. Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 139:1137–1155PubMedCrossRefGoogle Scholar
  109. Seifert W, Kühnisch J, Maritzen T, Horn D, Haucke V, Hennies HC (2011) Cohen syndrome-associated protein, COH1, is a novel, giant Golgi matrix protein required for Golgi integrity. J Biol Chem 286:37665–37675PubMedCrossRefGoogle Scholar
  110. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE (1991) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67:239–253PubMedCrossRefGoogle Scholar
  111. Sesso A, de Faria FP, Iwamura ES, Corrêa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107:517–528PubMedGoogle Scholar
  112. Simpson JC, Nilsson T, Pepperkok R (2006) Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell 17:723–737PubMedCrossRefGoogle Scholar
  113. Stagg SM, LaPointe P, Razvi A, Gürkan C, Potter CS, Carragher B, Balch WE (2008) Structural basis for cargo regulation of COPII coat assembly. Cell 134:474–484PubMedCrossRefGoogle Scholar
  114. Stauber T, Simpson JC, Pepperkok R, Vernos I (2006) A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Curr Biol 16:2245–2251PubMedCrossRefGoogle Scholar
  115. Stieber A, Chen Y, Wei S, Mourelatos Z, Gonatas J, Okamoto K, Gonatas NK (1998) The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: functional implications. Acta Neuropathol 5:245–253CrossRefGoogle Scholar
  116. Storrie B, White J, Röttger S, Stelzer EH, Suganuma T, Nilsson T (1998) Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol 143:1505–1521PubMedCrossRefGoogle Scholar
  117. Suga K, Hattori H, Saito A, Akagawa K (2005) RNA interference-mediated silencing of the syntaxin 5 gene induces Golgi fragmentation but capable of transporting vesicles. FEBS Lett 579:4226–4234PubMedCrossRefGoogle Scholar
  118. Szul T, Sztul E (2011) COPII and COPI traffic at the ER-Golgi interface. Physiology 26:348–364PubMedCrossRefGoogle Scholar
  119. Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E (2007) Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking. J Cell Sci 120:3929–3940PubMedCrossRefGoogle Scholar
  120. Taatjes DJ, Roth J (1986) The trans-tubular network of the hepatocyte Golgi apparatus is part of the secretory pathway. Eur J Cell Biol 42:344–350Google Scholar
  121. Tanaka K, Fukudome H (1991) Three-dimensional organization of the Golgi complex observed by scanning electron microscopy. J Electron Microsc Tech 17:15–23PubMedCrossRefGoogle Scholar
  122. Tomás M, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA (2010) Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules. Traffic 11:616–625PubMedCrossRefGoogle Scholar
  123. Tomás M, Marín MP, Martínez-Alonso E, Esteban-Pretel G, Díaz-Ruiz A, Vázquez-Martínez R, Malagón MM, Renau-Piqueras J, Martínez-Menárguez JA (2012) Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport. Histochem Cell Biol 138:489–501PubMedCrossRefGoogle Scholar
  124. Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081PubMedCrossRefGoogle Scholar
  125. Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A, Gaibisso R, Beznoussenko GV, Mironov AA, Mironov A Jr, Zelante L, Piemontese MR, Notarangelo A, Malhotra V, Vertel BM, Wilson C, De Matteis MA (2012) Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:1668–1672PubMedCrossRefGoogle Scholar
  126. Vivero-Salmerón G, Ballesta J, Martínez-Menárguez JA (2008) Heterotypic tubular connections at the endoplasmic reticulum-Golgi complex interface. Histochem Cell Biol 130:709–717PubMedCrossRefGoogle Scholar
  127. Volchuk A, Amherdt M, Ravazzola M, Brügger B, Rivera VM, Clackson T, Perrelet A, Söllner TH, Rothman JE, Orci L (2000) Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack. Cell 102:335–348PubMedCrossRefGoogle Scholar
  128. Volpicelli-Daley LA, Li Y, Zhang CJ, Kahn RA (2005) Isoform-selective effects of the depletion of ADP-ribosylation factors 1–5 on membrane traffic. Mol Biol Cell 16:4495–4508PubMedCrossRefGoogle Scholar
  129. Waters MG, Serafini T, Rothman JE (1991) ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248–251PubMedCrossRefGoogle Scholar
  130. Wehland J, Henkart M, Klausner R, Sandoval IV (1983) Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci USA 80:4286–4290PubMedCrossRefGoogle Scholar
  131. Wei JH, Seemann J (2010) Unraveling the Golgi ribbon. Traffic 11:1391–1400PubMedCrossRefGoogle Scholar
  132. Weidman P, Roth R, Heuser J (1993) Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell 75:123–133PubMedGoogle Scholar
  133. White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147:743–760PubMedCrossRefGoogle Scholar
  134. Wilson BS, Nuoffer C, Meinkoth JL, McCaffery M, Feramisco JR, Balch WE, Farquhar MG (1994) A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J Cell Biol 125:557–571PubMedCrossRefGoogle Scholar
  135. Yang JS, Gad H, Lee SY, Mironov A, Zhang L, Beznoussenko GV, Valente C, Turacchio G, Bonsra AN, Du G, Baldanzi G, Graziani A, Bourgoin S, Frohman MA, Luini A, Hsu VW (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10:1146–1153PubMedCrossRefGoogle Scholar
  136. Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, Leslie CC, Gelb MH, Brown WJ, Corda D, Luini A, Hsu VW (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13:996–1003PubMedCrossRefGoogle Scholar
  137. Zeuschner D, Geerts WJ, van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J (2006) Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8:377–383PubMedCrossRefGoogle Scholar
  138. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19PubMedCrossRefGoogle Scholar
  139. Zolov SN, Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168:747–759PubMedCrossRefGoogle Scholar
  140. Zuber C, Fan JY, Guhl B, Roth J (2004) Misfolded proinsulin accumulates in expanded pre-Golgi intermediates and endoplasmic reticulum subdomains in pancreatic beta cells of Akita mice. FASEB J 18:917–919PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emma Martínez-Alonso
    • 1
  • Mónica Tomás
    • 2
  • José A. Martínez-Menárguez
    • 1
  1. 1.Department of Cell Biology and Histology, Medical SchoolUniversity of MurciaMurciaSpain
  2. 2.Department of Human Anatomy and Embryology, Medical SchoolValencia UniversityValenciaSpain

Personalised recommendations