Histochemistry and Cell Biology

, Volume 139, Issue 2, pp 283–297

Reelin promotes microtubule dynamics in processes of developing neurons

Original Paper


The extracellular matrix protein reelin controls radial migration and layer formation of cortical neurons, in part by modulation of cytoskeletal dynamics. A stabilizing effect of reelin on the actin cytoskeleton has been described recently. However, it is poorly understood how reelin modulates microtubule dynamics. Here, we provide evidence that reelin increases microtubule assembly. This effect is mediated, at least in part, by promoting microtubule plus end dynamics in processes of developing neurons. Thus, we treated primary neuronal cultures with nocodazole to disrupt microtubules. After nocodazole washout, we found microtubule reassembly to be accelerated in the presence of reelin. Moreover, we show that reelin treatment promoted the formation of microtubule plus end binding protein 3 (EB3) comets in developing dendrites, and that EB3 immunostaining in the developing wild-type neocortex is most intense in the reelin-rich marginal zone where leading processes of radially migrating neurons project to. This characteristic EB3 staining pattern was absent in reeler. Also reassembly of nocodazole-dispersed dendritic Golgi apparati, which are closely associated to microtubules, was accelerated by reelin treatment, though with a substantially slower time course when compared to microtubule reassembly. In support of our in vitro results, we found that the subcellular distribution of α-tubulin and acetylated tubulin in reeler cortical sections differed from wild-type and from mice lacking the very low density lipoprotein receptor (VLDLR), known to bind reelin. Taken together, our results suggest that reelin promotes microtubule assembly, at least in part, by increasing microtubule plus end dynamics.


Reelin Microtubule assembly Microtubule plus end binding protein 3 Neuronal migration Dendritic Golgi α-Tubulin 


  1. Akhmanova A, Hoogenraad CC (2005) Microtubule plus-end-tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17(1):47–54PubMedCrossRefGoogle Scholar
  2. Brewer GJ (1997) Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 71(2):143–155PubMedCrossRefGoogle Scholar
  3. Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Pous C (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12(7):2047–2060PubMedGoogle Scholar
  4. Chai X, Forster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29(1):288–299. doi:10.1523/JNEUROSCI.2934-08.2009 PubMedCrossRefGoogle Scholar
  5. Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136(3):551–564. doi:10.1016/j.cell.2008.11.043 PubMedCrossRefGoogle Scholar
  6. Curran T, D’Arcangelo G (1998) Role of reelin in the control of brain development. Brain Res Rev 26(2–3):285–294PubMedCrossRefGoogle Scholar
  7. D’Arcangelo G (2005) The reeler mouse: anatomy of a mutant. Int Rev Neurobiol 71:383–417PubMedCrossRefGoogle Scholar
  8. D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17(1):23–31PubMedGoogle Scholar
  9. de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436(7051):704–708. doi:10.1038/nature03811 PubMedCrossRefGoogle Scholar
  10. Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J (2009) Reelin signaling antagonizes β-amyloid at the synapse. Proc Nat Acad Sci 106(37):15938–15943. doi:10.1073/pnas.0908176106 PubMedCrossRefGoogle Scholar
  11. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12(6):917–930. doi:10.1016/j.devcel.2007.04.002 PubMedCrossRefGoogle Scholar
  12. Forster E, Tielsch A, Saum B, Weiss KH, Johanssen C, Graus-Porta D, Muller U, Frotscher M (2002) Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA 99(20):13178–13183. doi:10.1073/pnas.202035899 PubMedCrossRefGoogle Scholar
  13. Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69(3):482–497. doi:10.1016/j.neuron.2011.01.003 PubMedCrossRefGoogle Scholar
  14. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (2002) Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109(7):873–885PubMedCrossRefGoogle Scholar
  15. Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10(10):1181–1189. http://www.nature.com/ncb/journal/v10/n10/suppinfo/ncb1778_S1.html Google Scholar
  16. Gonzalez-Billault C, Del Rio JA, Urena JM, Jimenez-Mateos EM, Barallobre MJ, Pascual M, Pujadas L, Simo S, Torre AL, Gavin R, Wandosell F, Soriano E, Avila J (2005) A role of MAP1B in Reelin-dependent neuronal migration. Cereb Cortex 15(8):1134–1145. doi:10.1093/cercor/bhh213 PubMedCrossRefGoogle Scholar
  17. Gopal PP, Simonet JC, Shapiro W, Golden JA (2010) Leading process branch instability in Lis1 ± nonradially migrating interneurons. Cereb Cortex 20(6):1497–1505. doi:10.1093/cercor/bhp211 PubMedCrossRefGoogle Scholar
  18. He M, Zhang ZH, Guan CB, Xia D, Yuan XB (2010) Leading tip drives soma translocation via forward F-actin flow during neuronal migration. J Neurosci 30(32):10885–10898. doi:10.1523/JNEUROSCI.0240-10.2010 PubMedCrossRefGoogle Scholar
  19. Hehnly H, Xu W, Chen JL, Stamnes M (2010) Cdc42 regulates microtubule-dependent Golgi positioning. Traffic 11(8):1067–1078. doi:10.1111/j.1600-0854.2010.01082.x PubMedCrossRefGoogle Scholar
  20. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24(2):481–489PubMedCrossRefGoogle Scholar
  21. Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48(5):757–771. doi:10.1016/j.neuron.2005.11.005 PubMedCrossRefGoogle Scholar
  22. Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733–737. doi:10.1038/39607 PubMedCrossRefGoogle Scholar
  23. Howell BW, Herrick TM, Hildebrand JD, Zhang Y, Cooper JA (2000) Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr Biol 10(15):877–885PubMedCrossRefGoogle Scholar
  24. Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 25(12):555–566. doi:10.1016/j.tig.2009.10.003 PubMedCrossRefGoogle Scholar
  25. Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, Oliver PL, Fray M, Harvey RJ, Molnar Z, Pinon MC, Dear N, Valdar W, Brown SD, Davies KE, Rawlins JN, Cowan NJ, Nolan P, Chelly J, Flint J (2007) Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128(1):45–57. doi:10.1016/j.cell.2006.12.017 PubMedCrossRefGoogle Scholar
  26. Kelly T-AN, Katagiri Y, Vartanian KB, Kumar P, Chen I-I, Rosoff WJ, Urbach JS, Geller HM (2010) Localized alteration of microtubule polymerization in response to guidance cues. J Neurosci Res 88(14):3024–3033. doi:10.1002/jnr.22478 PubMedCrossRefGoogle Scholar
  27. Kocherhans S, Madhusudan A, Doehner J, Breu KS, Nitsch RM, Fritschy J-M, Knuesel I (2010) Reduced reelin expression accelerates amyloid-β plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J Neurosci 30(27):9228–9240. doi:10.1523/jneurosci.0418-10.2010 PubMedGoogle Scholar
  28. Leemhuis J, Bouche E, Frotscher M, Henle F, Hein L, Herz J, Meyer DK, Pichler M, Roth G, Schwan C, Bock HH (2010) Reelin signals through apolipoprotein E receptor 2 and Cdc42 to increase growth cone motility and filopodia formation. J Neurosci 30(44):14759–14772. doi:10.1523/JNEUROSCI.4036-10.2010 PubMedCrossRefGoogle Scholar
  29. Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA, Olson EC, Howell BW (2010) Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 143(5):826–836. doi:10.1016/j.cell.2010.10.029 PubMedCrossRefGoogle Scholar
  30. Moores CA, Perderiset M, Kappeler C, Kain S, Drummond D, Perkins SJ, Chelly J, Cross R, Houdusse A, Francis F (2006) Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 25(19):4448–4457. doi:10.1038/sj.emboj.7601335 PubMedCrossRefGoogle Scholar
  31. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3(6):423–432. doi:10.1038/nrn845 PubMedCrossRefGoogle Scholar
  32. Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41(1):71–84PubMedCrossRefGoogle Scholar
  33. Pinto Lord MC, Caviness VS Jr (1979) Determinants of cell shape and orientation: a comparative Golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice. J Comp Neurol 187(1):49–69. doi:10.1002/cne.901870104 PubMedCrossRefGoogle Scholar
  34. Rakic P, Knyihar-Csillik E, Csillik B (1996) Polarity of microtubule assemblies during neuronal cell migration. Proc Nat Acad Sci 93(17):9218–9222PubMedCrossRefGoogle Scholar
  35. Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci USA 102(38):13652–13657. doi:10.1073/pnas.0506008102 PubMedCrossRefGoogle Scholar
  36. Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai LH (2000) Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat Cell Biol 2(11):767–775. doi:10.1038/35041000 PubMedCrossRefGoogle Scholar
  37. Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI, Grosveld F, van Cappellen G, Akhmanova A, Galjart N (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 23(7):2655–2664PubMedGoogle Scholar
  38. Stiess M, Maghelli N, Kapitein LC, Gomis-Rüth S, Wilsch-Bräuninger M, Hoogenraad CC, Tolić-Nørrelykke IM, Bradke F (2010) Axon extension occurs independently of centrosomal microtubule nucleation. Science 327(5966):704–707. doi:10.1126/science.1182179 PubMedCrossRefGoogle Scholar
  39. Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4(6):496–505. doi:10.1038/nrn1113 PubMedCrossRefGoogle Scholar
  40. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701PubMedCrossRefGoogle Scholar
  41. Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA 104(41):16182–16187. doi:10.1073/pnas.0708047104 PubMedCrossRefGoogle Scholar
  42. Zhang G, Assadi AH, McNeil RS, Beffert U, Wynshaw-Boris A, Herz J, Clark GD, D’Arcangelo G (2007) The Pafah1b complex interacts with the reelin receptor VLDLR. PLoS ONE 2(2):e252. doi:10.1371/journal.pone.0000252 PubMedCrossRefGoogle Scholar
  43. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64(2):173–187. doi:10.1016/j.neuron.2009.08.018 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of NeuroanatomyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations