Histochemistry and Cell Biology

, Volume 139, Issue 1, pp 173–179 | Cite as

Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution

  • Sebastian Malkusch
  • Walter Muranyi
  • Barbara Müller
  • Hans-Georg Kräusslich
  • Mike Heilemann
Original Paper


We apply single-molecule super-resolution microscopy and coordinate-based cluster analysis to extract information on the distribution and on the morphology and size of clusters of the human immunodeficiency virus (HIV-1) Gag polyprotein in fixed cells. Three different patterns of Gag distribution could be distinguished. A major type of assembly observed was in accordance with previous electron microscopy analyses revealing ~140 nm-sized HIV-1 buds at the plasma membrane of virus-producing cells. The distribution of Gag molecules in the 2D projection at these sites was consistent with a semi-spherical 3D assembly. We compared different methods of cluster analysis and demonstrated that we can reliably distinguish different distribution patterns of the Gag polyprotein. These methods were applied to extract information on the properties of the different Gag clusters.


Super-resolution microscopy Single-molecule fluorescence microscopy Cluster analysis Cellular structures Human immunodeficiency virus Gag 



Capsid domain


Direct stochastic optical reconstruction microscopy


Electron-multiplying charge device


Human immunodeficiency virus type 1


Matrix domain




Nucleocapsid domains


Region of interest


Ryanodine receptors


Total internal reflection fluorescence



This work was supported by the Systems Biology Initiative (FORSYS) of the German Ministry of Research and Education (BMBF), Project VIROQUANT and Grant No. 0315262.

Supplementary material

418_2012_1014_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1617 kb)


  1. Abramoff MDM, Paulo J, Ram, Sunanda J (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  2. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci USA 106:22275–22280PubMedCrossRefGoogle Scholar
  3. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedCrossRefGoogle Scholar
  4. Briggs JA, Krausslich HG (2011) The molecular architecture of HIV. J Mol Biol 410:491–500PubMedCrossRefGoogle Scholar
  5. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci USA 106:11090–11095PubMedCrossRefGoogle Scholar
  6. Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN, Johnson MC, Muller B, Grunewald K, Krausslich HG (2008) Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4:592–599PubMedCrossRefGoogle Scholar
  7. Eckhardt M, Anders M, Muranyi W, Heilemann M, Krijnse-Locker J, Muller B (2011) A SNAP-tagged derivative of HIV-1—a versatile tool to study virus-cell interactions. PLoS ONE 6:e22007PubMedCrossRefGoogle Scholar
  8. Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M (2011) Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16:3106–3118PubMedCrossRefGoogle Scholar
  9. Haase P (1995) Spatial pattern analysis in ecology based on Ripley K-function: introduction and methods of edge correction. J Veg Sci 6:575–582CrossRefGoogle Scholar
  10. Heilemann M (2010) Fluorescence microscopy beyond the diffraction limit. J Biotechnol 149:243–251PubMedCrossRefGoogle Scholar
  11. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176PubMedCrossRefGoogle Scholar
  12. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48:6903–6908PubMedCrossRefGoogle Scholar
  13. Hermida-Matsumoto L, Resh MD (2000) Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol 74:8670–8679PubMedCrossRefGoogle Scholar
  14. Ivanchenko S, Godinez WJ, Lampe M, Krausslich HG, Eils R, Rohr K, Brauchle C, Muller B, Lamb DC (2009) Dynamics of HIV-1 assembly and release. PLoS Pathog 5:e1000652PubMedCrossRefGoogle Scholar
  15. Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, Bieniasz PD (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4:e435PubMedCrossRefGoogle Scholar
  16. Jouvenet N, Bieniasz PD, Simon SM (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454:236–240PubMedCrossRefGoogle Scholar
  17. Jouvenet N, Simon SM, Bieniasz PD (2011) Visualizing HIV-1 assembly. J Mol Biol 410:501–511PubMedCrossRefGoogle Scholar
  18. Kiskowski MA, Hancock JF, Kenworthy AK (2009) On the use of Ripley’s K-function and its derivatives to analyze domain size. Biophys J 97:1095–1103PubMedCrossRefGoogle Scholar
  19. Lampe M, Briggs JA, Endress T, Glass B, Riegelsberger S, Krausslich HG, Lamb DC, Brauchle C, Muller B (2007) Double-labelled HIV-1 particles for study of virus-cell interaction. Virology 360:92–104PubMedCrossRefGoogle Scholar
  20. Larson DR, Johnson MC, Webb WW, Vogt VM (2005) Visualization of retrovirus budding with correlated light and electron microscopy. Proc Natl Acad Sci USA 102:15453–15458PubMedCrossRefGoogle Scholar
  21. Lehmann M, Rocha S, Mangeat B, Blanchet F, Uji IH, Hofkens J, Piguet V (2011) Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog 7:e1002456PubMedCrossRefGoogle Scholar
  22. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157PubMedCrossRefGoogle Scholar
  23. Mayhew TM, Griffiths G, Lucocq JM (2004) Applications of an efficient method for comparing immunogold labelling patterns in the same sets of compartments in different groups of cells. Histochem Cell Biol 122:171–177PubMedCrossRefGoogle Scholar
  24. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7:377–381PubMedCrossRefGoogle Scholar
  25. Muller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Krausslich HG (2004) Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol 78:10803–10813PubMedCrossRefGoogle Scholar
  26. Ono A (2009) HIV-1 assembly at the plasma membrane: Gag trafficking and localization. Future Virol 4:241–257PubMedCrossRefGoogle Scholar
  27. Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3:446–454PubMedCrossRefGoogle Scholar
  28. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc 39:172–212Google Scholar
  29. Ripley BD (1979) Tests of ‘randomness’ for spatial point patterns. J R Stat Soc 41:368–374Google Scholar
  30. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795PubMedCrossRefGoogle Scholar
  31. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175PubMedCrossRefGoogle Scholar
  32. van de Linde S, Sauer M, Heilemann M (2008) Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J Struct Biol 164:250–254PubMedCrossRefGoogle Scholar
  33. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009PubMedCrossRefGoogle Scholar
  34. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12:655–662PubMedCrossRefGoogle Scholar
  35. Wolter S, Schuttpelz M, Tscherepanow M, Van De Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237:12–22PubMedCrossRefGoogle Scholar
  36. Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719PubMedCrossRefGoogle Scholar
  37. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26:2218–2226PubMedCrossRefGoogle Scholar
  38. Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9:185–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sebastian Malkusch
    • 1
  • Walter Muranyi
    • 2
  • Barbara Müller
    • 2
  • Hans-Georg Kräusslich
    • 2
  • Mike Heilemann
    • 1
    • 3
  1. 1.Biotechnology and BiophysicsJulius-Maximilians-University WürzburgWürzburgGermany
  2. 2.Department of Infectious Diseases, VirologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.BIOQUANT CentreUniversity of HeidelbergHeidelbergGermany

Personalised recommendations