Histochemistry and Cell Biology

, Volume 139, Issue 1, pp 205–220 | Cite as

A simple method to obtain pure cultures of multiciliated ependymal cells from adult rodents

  • J. M. GrondonaEmail author
  • P. Granados-Durán
  • P. Fernández-Llebrez
  • M. D. López-ÁvalosEmail author
Original Paper


Ependymal cells form an epithelium lining the ventricular cavities of the vertebrate brain. Numerous methods to obtain primary culture ependymal cells have been developed. Most of them use foetal or neonatal rat brain and the few that utilize adult brain hardly achieve purity. Here, we describe a simple and novel method to obtain a pure non-adherent ependymal cell culture from explants of the striatal and septal walls of the lateral ventricles. The combination of a low incubation temperature followed by a gentle enzymatic digestion allows the detachment of most of the ependymal cells from the ventricular wall in a period of 6 h. Along with ependymal cells, a low percentage (less than 6 %) of non-ependymal cells also detaches. However, they do not survive under two restrictive culture conditions: (1) a simple medium (alpha-MEM with glucose) without any supplement; and (2) a low density of 1 cell/µl. This purification method strategy does not require cell labelling with antibodies and cell sorting, which makes it a simpler and cheaper procedure than other methods previously described. After a period of 48 h, only ependymal cells survive such conditions, revealing the remarkable survival capacity of ependymal cells. Ependymal cells can be maintained in culture for up to 7–10 days, with the best survival rates obtained in Neurobasal supplemented with B27 among the tested media. After 7 days in culture, ependymal cells lose most of the cilia and therefore the mobility, while acquiring radial glial cell markers (GFAP, BLBP, GLAST). This interesting fact might indicate a reprogramming of the cell identity.


Ependymal cells Primary cell culture Multiciliated epithelium Dedifferentiation Ventricular wall Radial glia Rodents 



The authors are grateful to José Esteban Casares Mira for valuable technical assistance and David Navas Fernández for his help with confocal microscopy. Leica confocal microscope (SP5 II) was funded by FEDER funds of the European Union. This work was supported by grants from Ministerio de Ciencia, Tecnología, Innovación y Sanidad (Spain) (BFU 2006-11754; SAF2010-19087; PNSD2010-143), and Junta de Andalucía (Spain) (P07-CVI-03079; SAS-S 0742; SAS08-0029; SAS 2010-111224).

Supplementary material

Online resource 1 and 2 Videos taken from the ependymal surface of an explant 2 hours after the enzymatic treatment. Ependymal cell clumps of different sizes (3-5 cells up to about 20-30 cells) partially detached from the surface can be observed. Few cells are already free in the nearby media. Clumps and individual cells display a prominent circular movement as a consequence of the active ciliary beat (MPG 11702 kb)

Supplementary material 2 (MPG 11830 kb)

Online resource 3 Video of isolated ependymal cells 6 h after the enzymatic treatment. Most of the cells are in motion, which indicates that they are ciliated ependymal cells (MPG 2078 kb)


  1. Altevogt P, Hubbe M, Ruppert M, Lohr J, von Hoegen P, Sammar M, Andrew DP, McEvoy L, Humphries MJ, Butcher EC (1995) The alpha 4 integrin chain is a ligand for alpha 4 beta 7 and alpha 4 beta 1. J Exp Med 182(2):345–355PubMedCrossRefGoogle Scholar
  2. Arai Y, Deguchi K, Takashima S (1998) Vascular endothelial growth factor in brains with periventricular leukomalacia. Pediatr Neurol 19(1):45–49PubMedCrossRefGoogle Scholar
  3. Araki M, Sato F, Saito T (1983) Primary monolayer culture of rat ependymal cells: an ultrastructural study. Arch Histol Jpn 46(2):191–201PubMedCrossRefGoogle Scholar
  4. Attar A, Kaptanoglu E, Aydin Z, Ayten M, Sargon MF (2005) Electron microscopic study of the progeny of ependymal stem cells in the normal and injured spinal cord. Surg Neurol 64(Suppl 2):S28–S32PubMedCrossRefGoogle Scholar
  5. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292(5):L1073–L1084. doi: 10.1152/ajplung.00347.2006 PubMedCrossRefGoogle Scholar
  6. Biran R, Webb K, Noble MD, Tresco PA (2001) Surfactant-immobilized fibronectin enhances bioactivity and regulates sensory neurite outgrowth. J Biomed Mater Res 55(1):1–12PubMedCrossRefGoogle Scholar
  7. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576PubMedCrossRefGoogle Scholar
  8. Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41(1):2–13PubMedCrossRefGoogle Scholar
  9. Calaora V, Chazal G, Nielsen PJ, Rougon G, Moreau H (1996) mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73(2):581–594PubMedCrossRefGoogle Scholar
  10. Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisen J (2009) Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 12(3):259–267PubMedCrossRefGoogle Scholar
  11. Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15(4):511–524PubMedCrossRefGoogle Scholar
  12. Cathcart RS 3rd, Worthington WC Jr (1964) Ciliary movement in the rat cerebral ventricles: clearing action and directions of currents. J Neuropathol Exp Neurol 23:609–618PubMedCrossRefGoogle Scholar
  13. Chen J, Leong SY, Schachner M (2005) Differential expression of cell fate determinants in neurons and glial cells of adult mouse spinal cord after compression injury. Eur J Neurosci 22(8):1895–1906. doi: 10.1111/j.1460-9568.2005.04348.x PubMedCrossRefGoogle Scholar
  14. Chernoff EA, Munck CM, Mendelsohn LG, Egar MW (1990) Primary culture of axolotl spinal cord ependymal cells. Tissue Cell 22(5):601–613PubMedCrossRefGoogle Scholar
  15. Chernoff EA, Henry LC, Spotts T (1998) An ependymal cell culture system for the study of spinal cord regeneration. Wound Repair Regen 6(4):403–412PubMedCrossRefGoogle Scholar
  16. Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10(2):153–163PubMedCrossRefGoogle Scholar
  17. Cizkova D, Nagyova M, Slovinska L, Novotna I, Radonak J, Cizek M, Mechirova E, Tomori Z, Hlucilova J, Motlik J, Sulla I Jr, Vanicky I (2009) Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat. Cell Mol Neurobiol 29(6–7):999–1013PubMedCrossRefGoogle Scholar
  18. Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275(8):5512–5520PubMedCrossRefGoogle Scholar
  19. Corbeil D, Joester A, Fargeas CA, Jaszai J, Garwood J, Hellwig A, Werner HB, Huttner WB (2009) Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 57(8):860–874. doi: 10.1002/glia.20812 PubMedCrossRefGoogle Scholar
  20. Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105(3):1026–1031PubMedCrossRefGoogle Scholar
  21. Danilov AI, Covacu R, Moe MC, Langmoen IA, Johansson CB, Olsson T, Brundin L (2006) Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur J Neurosci 23(2):394–400PubMedCrossRefGoogle Scholar
  22. Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14(1):1–13PubMedCrossRefGoogle Scholar
  23. Detrait E, Lhoest JB, Bertrand P, van den Bosch de Aguilar P (1999) Fibronectin-pluronic coadsorption on a polystyrene surface with increasing hydrophobicity: relationship to cell adhesion. J Biomed Mater Res 45(4):404–413PubMedCrossRefGoogle Scholar
  24. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134. doi: 10.1038/nn1144 PubMedCrossRefGoogle Scholar
  25. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061PubMedGoogle Scholar
  26. Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26(2–4):148–165. doi: 10.1159/000082134 PubMedCrossRefGoogle Scholar
  27. Fadaee-Shohada MJ, Hirst RA, Rutman A, Roberts IS, O’Callaghan C, Andrew PW (2010) The behaviour of both Listeria monocytogenes and rat ciliated ependymal cells is altered during their co-culture. PLoS ONE 5(5):e10450. doi: 10.1371/journal.pone.0010450 PubMedCrossRefGoogle Scholar
  28. Figarella-Branger D, Moreau H, Pellissier JF, Bianco N, Rougon G (1993) CD24, a signal-transducing molecule expressed on human B lymphocytes, is a marker for human regenerating muscle. Acta Neuropathol 86(3):275–284PubMedCrossRefGoogle Scholar
  29. Gabrion J, Peraldi S, Faivre-Bauman A, Klotz C, Ghandour MS, Paulin D, Assenmacher I, Tixier-Vidal A (1988) Characterization of ependymal cells in hypothalamic and choroidal primary cultures. Neuroscience 24(3):993–1007PubMedCrossRefGoogle Scholar
  30. Gabrion JB, Herbute S, Bouille C, Maurel D, Kuchler-Bopp S, Laabich A, Delaunoy JP (1998) Ependymal and choroidal cells in culture: characterization and functional differentiation. Microsc Res Tech 41(2):124–157PubMedCrossRefGoogle Scholar
  31. Garcia MA, Millan C, Balmaceda-Aguilera C, Castro T, Pastor P, Montecinos H, Reinicke K, Zuniga F, Vera JC, Onate SA, Nualart F (2003) Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem 86(3):709–724PubMedCrossRefGoogle Scholar
  32. Garcia-Segura LM, Perez J, Pons S, Rejas MT, Torres-Aleman I (1991) Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res 560(1–2):167–174PubMedCrossRefGoogle Scholar
  33. Garcia-Segura LM, Rodriguez JR, Torres-Aleman I (1997) Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study. J Neurocytol 26(7):479–490PubMedCrossRefGoogle Scholar
  34. Gleason D, Fallon JH, Guerra M, Liu JC, Bryant PJ (2008) Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury. Neuroscience 156(1):81–88PubMedCrossRefGoogle Scholar
  35. Globus MY, Wester P, Busto R, Dietrich WD (1992) Ischemia-induced extracellular release of serotonin plays a role in CA1 neuronal cell death in rats. Stroke J Cereb Circ 23(11):1595–1601CrossRefGoogle Scholar
  36. Gomez-Roldan MC, Perez-Martin M, Capilla-Gonzalez V, Cifuentes M, Perez J, Garcia-Verdugo JM, Fernandez-Llebrez P (2008) Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. J Comp Neurol 507(4):1571–1587CrossRefGoogle Scholar
  37. Gonzalez AM, Berry M, Maher PA, Logan A, Baird A (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res 701(1–2):201–226PubMedCrossRefGoogle Scholar
  38. Grabb MC, Lobner D, Turetsky DM, Choi DW (2002) Preconditioned resistance to oxygen-glucose deprivation-induced cortical neuronal death: alterations in vesicular GABA and glutamate release. Neuroscience 115(1):173–183PubMedCrossRefGoogle Scholar
  39. Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23(37):11587–11601PubMedGoogle Scholar
  40. Grondona JM, Perez-Martin M, Cifuentes M, Perez J, Jimenez AJ, Perez-Figares JM, Fernandez-Llebrez P (1996) Ependymal denudation, aqueductal obliteration and hydrocephalus after a single injection of neuraminidase into the lateral ventricle of adult rats. J Neuropathol Exp Neurol 55(9):999–1008PubMedCrossRefGoogle Scholar
  41. Grooms SY, Terracio L, Jones LS (1993) Anatomical localization of beta 1 integrin-like immunoreactivity in rat brain. Exp Neurol 122(2):253–259PubMedCrossRefGoogle Scholar
  42. Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, Hirota Y, Desoeuvre A, Boutin C, Han YG, Mirzadeh Z, Cremer H, Montcouquiol M, Sawamoto K, Spassky N (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12(4):341–350. doi: 10.1038/ncb2040 PubMedCrossRefGoogle Scholar
  43. Hall PE, Lathia JD, Miller NG, Caldwell MA, Ffrench-Constant C (2006) Integrins are markers of human neural stem cells. Stem Cells 24(9):2078–2084. doi: 10.1634/stemcells.2005-0595 PubMedCrossRefGoogle Scholar
  44. Hamai M, Minokoshi Y, Shimazu T (1999) l-Glutamate and insulin enhance glycogen synthesis in cultured astrocytes from the rat brain through different intracellular mechanisms. J Neurochem 73(1):400–407PubMedCrossRefGoogle Scholar
  45. Hamprecht B, Loffler F (1985) Primary glial cultures as a model for studying hormone action. Methods Enzymol 109:341–345PubMedCrossRefGoogle Scholar
  46. Hild W (1957) Ependymal cells in tissue culture. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 46(3):259–271PubMedGoogle Scholar
  47. Hild W, Takenaka T, Walker F (1965) Electrophysiological properties of ependymal cells from the mammalian brain in tissue culture. Exp Neurol 11:493–501PubMedCrossRefGoogle Scholar
  48. Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida YS, Inoue M, Ito T, Kato H, Sakaguchi M, Sunabori T, Nakaya MA, Nonaka S, Ogura T, Higuchi H, Okano H, Spassky N, Sawamoto K (2010) Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137(18):3037–3046. doi: 10.1242/dev.050120 PubMedCrossRefGoogle Scholar
  49. Hogue MJ (1947) Human fetal ependymal cells in tissue cultures. Anat Rec 99(4):642PubMedCrossRefGoogle Scholar
  50. Hoyo-Becerra C, Lopez-Avalos MD, Alcaide-Gavilan M, Gomez-Roldan MC, Perez J, Fernandez-Llebrez P, Grondona JM (2005) Reissner’s fiber formation depends on developmentally regulated factors extrinsic to the subcommissural organ. Cell Tissue Res 321(3):429–441PubMedCrossRefGoogle Scholar
  51. Hoyo-Becerra C, Lopez-Avalos MD, Perez J, Miranda E, Rojas-Rios P, Fernandez-Llebrez P, Grondona JM (2006) Continuous delivery of a monoclonal antibody against Reissner’s fiber into CSF reveals CSF-soluble material immunorelated to the subcommissural organ in early chick embryos. Cell Tissue Res 326(3):771–786PubMedCrossRefGoogle Scholar
  52. Hsu SM, Raine L, Fanger H (1981) Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29(4):577–580PubMedCrossRefGoogle Scholar
  53. Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, North A, Heintz N, Omran H (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13(18):2133–2141PubMedCrossRefGoogle Scholar
  54. Janson AM, Frisen J, Johanson C, Momma S, Clarke D, Zhao M, Lendahl U, Delfani K (1999) Ependymal neural stem cells and method for their isolation. International Patent WO 99/67363, 29.12.99Google Scholar
  55. Jensen-Smith HC, Luduena RF, Hallworth R (2003) Requirement for the betaI and betaIV tubulin isotypes in mammalian cilia. Cell Motil Cytoskelet 55(3):213–220. doi: 10.1002/cm.10122 CrossRefGoogle Scholar
  56. Jetha KA, Egginton S, Nash GB (2007) Changes in the integrin-mediated adhesion of human neutrophils in the cold and after rewarming. Biorheology 44(1):37–49PubMedGoogle Scholar
  57. Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR, Eckley DM, Sasaki T, Patton B, Mattson MP, Hirschi KK, Dickinson ME, Ffrench-Constant C (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30(29):9771–9781. doi: 10.1523/JNEUROSCI.0700-10.2010 PubMedCrossRefGoogle Scholar
  58. Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, Kawase Y, Suzuki H, Nagashima K, Ikeda K, Motoyama N (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22(8):2769–2776PubMedCrossRefGoogle Scholar
  59. Kowtharapu BS, Vincent FC, Bubis A, Verleysdonk S (2009) Lentiviral transfection of ependymal primary cultures facilitates the characterisation of kinocilia-specific promoters. Neurochem Res 34(8):1380–1392. doi: 10.1007/s11064-009-9918-7 PubMedCrossRefGoogle Scholar
  60. Kuchler S, Graff MN, Gobaille S, Vincendon G, Roche AC, Delaunoy JP, Monsigny M, Zanetta JP (1994) Mannose dependent tightening of the rat ependymal cell barrier. In vivo and in vitro study using neoglycoproteins. Neurochem Int 24(1):43–55PubMedCrossRefGoogle Scholar
  61. Laabich A, Sensenbrenner M, Delaunoy JP (1989) Monolayer cultures of ependymal cells on porous bottom dishes. A tool for transport studies across the brain cerebrospinal barrier. Neurosci Lett 103(2):157–161PubMedCrossRefGoogle Scholar
  62. Laabich A, Graff MN, Dunel-Erb S, Sensenbrenner M, Delaunoy JP (1991) A study of in vitro and in vivo morphological changes of ependymal cells induced by galactocerebrosides. Glia 4(5):504–513PubMedCrossRefGoogle Scholar
  63. Li Y, Chen J, Chopp M (2002) Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci 193(2):137–146PubMedCrossRefGoogle Scholar
  64. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28(3):713–726PubMedCrossRefGoogle Scholar
  65. Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127(24):5253–5263PubMedGoogle Scholar
  66. Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331(1):165–178. doi: 10.1007/s00441-007-0481-8 PubMedCrossRefGoogle Scholar
  67. Manthorpe CM, Wilkin GP, Wilson JE (1977) Purification of viable ciliated cuboidal ependymal cells from rat brain. Brain Res 134(3):407–415PubMedCrossRefGoogle Scholar
  68. McClintock TS, Glasser CE, Bose SC, Bergman DA (2008) Tissue expression patterns identify mouse cilia genes. Physiol Genomics 32(2):198–206. doi: 10.1152/physiolgenomics.00128.2007 PubMedGoogle Scholar
  69. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182PubMedCrossRefGoogle Scholar
  70. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101(50):17528–17532PubMedCrossRefGoogle Scholar
  71. Mikawa S, Sato K (2011) Noggin expression in the adult rat brain. Neuroscience 184:38–53. doi: 10.1016/j.neuroscience.2011.03.036 PubMedCrossRefGoogle Scholar
  72. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278. doi: 10.1016/j.stem.2008.07.004 PubMedCrossRefGoogle Scholar
  73. Mirzadeh Z, Doetsch F, Sawamoto K, Wichterle H, Alvarez-Buylla A (2010) The subventricular zone en-face: wholemount staining and ependymal flow. J Vis Exp: JoVE (39). doi: 10.3791/1938
  74. Miyagi M, Mikawa S, Hasegawa T, Kobayashi S, Matsuyama Y, Sato K (2011) Bone morphogenetic protein receptor expressions in the adult rat brain. Neuroscience 176:93–109. doi: 10.1016/j.neuroscience.2010.12.027 PubMedCrossRefGoogle Scholar
  75. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31(5):727–741PubMedCrossRefGoogle Scholar
  76. Monkkonen KS, Hakumaki JM, Hirst RA, Miettinen RA, O’Callaghan C, Mannisto PT, Laitinen JT (2007) Intracerebroventricular antisense knockdown of G alpha i2 results in ciliary stasis and ventricular dilatation in the rat. BMC Neurosci 8:26PubMedCrossRefGoogle Scholar
  77. Monkkonen KS, Hirst RA, Laitinen JT, O’Callaghan C (2008) PACAP27 regulates ciliary function in primary cultures of rat brain ependymal cells. Neuropeptides 42(5–6):633–640PubMedCrossRefGoogle Scholar
  78. Moreno-Manzano V, Rodriguez-Jimenez FJ, Garcia-Rosello M, Lainez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sanchez-Puelles JM, Stojkovic M (2009) Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 27(3):733–743PubMedCrossRefGoogle Scholar
  79. Murin R, Cesar M, Kowtharapu BS, Verleysdonk S, Hamprecht B (2009) Expression of pyruvate carboxylase in cultured oligodendroglial, microglial and ependymal cells. Neurochem Res 34(3):480–489. doi: 10.1007/s11064-008-9806-6 PubMedCrossRefGoogle Scholar
  80. Namiki J, Tator CH (1999) Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 58(5):489–498PubMedCrossRefGoogle Scholar
  81. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720PubMedCrossRefGoogle Scholar
  82. Oksche A (1973) Circumventricular structures and pituitary functions. In: Ariens-Kappers J (ed) Proceedings of the fourth international congress of endocrinology, Excerpta Medica, Amsterdam, 1973, pp 73–79Google Scholar
  83. Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo JM, Kuo CT (2011) Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71(1):61–75. doi: 10.1016/j.neuron.2011.05.029 PubMedCrossRefGoogle Scholar
  84. Perez-Martin M, Grondona JM, Cifuentes M, Perez-Figares JM, Jimenez JA, Fernandez-Llebrez P (2000) Ependymal explants from the lateral ventricle of the adult bovine brain: a model system for morphological and functional studies of the ependyma. Cell Tissue Res 300(1):11–19PubMedCrossRefGoogle Scholar
  85. Perez-Martin M, Cifuentes M, Grondona JM, Arrabal FJB-S, Arrabal PM, Perez-Figares JM, Jimenez AJ, Garcia-Segura LM (2003) Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor. Eur J Neurosci 17(2):205–211PubMedCrossRefGoogle Scholar
  86. Pfeiffer B, Elmer K, Roggendorf W, Reinhart PH, Hamprecht B (1990) Immunohistochemical demonstration of glycogen phosphorylase in rat brain slices. Histochemistry 94(1):73–80PubMedCrossRefGoogle Scholar
  87. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67(12):5727–5736PubMedCrossRefGoogle Scholar
  88. Pfenninger CV, Steinhoff C, Hertwig F, Nuber UA (2011) Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression. Glia 59(1):68–81PubMedCrossRefGoogle Scholar
  89. Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101(6):2085–2094PubMedCrossRefGoogle Scholar
  90. Prothmann C, Wellard J, Berger J, Hamprecht B, Verleysdonk S (2001) Primary cultures as a model for studying ependymal functions: glycogen metabolism in ependymal cells. Brain Res 920(1–2):74–83PubMedCrossRefGoogle Scholar
  91. Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, Ferron SR, Aroca-Aguilar JD, Sanchez P, Mira H, Escribano J, Farinas I (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9(3):331–339. doi: 10.1038/nn1657 PubMedCrossRefGoogle Scholar
  92. Rico F, Chu C, Abdulreda MH, Qin Y, Moy VT (2010) Temperature modulation of integrin-mediated cell adhesion. Biophys J 99(5):1387–1396. doi: 10.1016/j.bpj.2010.06.037 PubMedCrossRefGoogle Scholar
  93. Rieke GK, Jordan FL, Wynder HJ, Thomas WE (1987) Ultrastructure of ependymal cells in primary cultures of cerebral cortex. J Neurosci Res 18(3):484–492. doi: 10.1002/jnr.490180316 PubMedCrossRefGoogle Scholar
  94. Sato T, Mikawa S, Sato K (2010) BMP2 expression in the adult rat brain. J Comp Neurol 518(22):4513–4530. doi: 10.1002/cne.22469 PubMedCrossRefGoogle Scholar
  95. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632PubMedCrossRefGoogle Scholar
  96. Schorr M, Zhou L, Schwechheimer K (1996) Expression of ciliary neurotrophic factor is maintained in spinal motor neurons of amyotrophic lateral sclerosis. J Neurol Sci 140(1–2):117–122PubMedCrossRefGoogle Scholar
  97. Severi I, Carradori MR, Lorenzi T, Amici A, Cinti S, Giordano A (2012) Constitutive expression of ciliary neurotrophic factor in mouse hypothalamus. J Anat 220(6):622–631. doi: 10.1111/j.1469-7580.2012.01498.x PubMedCrossRefGoogle Scholar
  98. Shimamura M, Shibuya N, Ito M, Yamagata T (1994) Repulsive contribution of surface sialic acid residues to cell adhesion to substratum. Biochem Mol Biol Int 33(5):871–878PubMedGoogle Scholar
  99. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25(1):10–18PubMedCrossRefGoogle Scholar
  100. Suzuki S, Li AJ, Ishisaki A, Hou X, Hasegawa M, Fukumura M, Akaike T, Imamura T (2001) Feeding suppression by fibroblast growth factor-1 is accompanied by selective induction of heat shock protein 27 in hypothalamic astrocytes. Eur J Neurosci 13(12):2299–2308PubMedCrossRefGoogle Scholar
  101. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8(4):323–335PubMedCrossRefGoogle Scholar
  102. Thomas WE (1985) Synthesis of acetylcholine and gamma-aminobutyric acid by dissociated cerebral cortical cells in vitro. Brain Res 332(1):79–89PubMedCrossRefGoogle Scholar
  103. Tooyama I, Kremer HP, Hayden MR, Kimura H, McGeer EG, McGeer PL (1993) Acidic and basic fibroblast growth factor-like immunoreactivity in the striatum and midbrain in Huntington’s disease. Brain Res 610(1):1–7PubMedCrossRefGoogle Scholar
  104. Tritschler F, Murin R, Birk B, Berger J, Rapp M, Hamprecht B, Verleysdonk S (2007) Thrombin causes the enrichment of rat brain primary cultures with ependymal cells via protease-activated receptor 1. Neurochem Res 32(6):1028–1035. doi: 10.1007/s11064-006-9267-8 PubMedCrossRefGoogle Scholar
  105. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97(26):14720–14725PubMedCrossRefGoogle Scholar
  106. Verleysdonk S, Hamprecht B, Rapp M, Wellard J (2004a) Uptake and metabolism of serotonin by ependymal primary cultures. Neurochem Res 29(9):1739–1747PubMedCrossRefGoogle Scholar
  107. Verleysdonk S, Hirschner W, Wellard J, Rapp M, de los Angeles Garcia M, Nualart F, Hamprecht B (2004b) Regulation by insulin and insulin-like growth factor of 2-deoxyglucose uptake in primary ependymal cell cultures. Neurochem Res 29(1):127–134PubMedCrossRefGoogle Scholar
  108. Verleysdonk S, Kistner S, Pfeiffer-Guglielmi B, Wellard J, Lupescu A, Laske J, Lang F, Rapp M, Hamprecht B (2005) Glycogen metabolism in rat ependymal primary cultures: regulation by serotonin. Brain Res 1060(1–2):89–99PubMedCrossRefGoogle Scholar
  109. Weibel M, Pettmann B, Artault JC, Sensenbrenner M, Labourdette G (1986) Primary culture of rat ependymal cells in serum-free defined medium. Brain Res 390(2):199–209PubMedCrossRefGoogle Scholar
  110. Worthington WC Jr, Cathcart RS 3rd (1963) Ependymal cilia: distribution and activity in the adult human brain. Science 139:221–222PubMedCrossRefGoogle Scholar
  111. Xia Y, Gil SG, Carter WG (1996) Anchorage mediated by integrin alpha6beta4 to laminin 5 (epiligrin) regulates tyrosine phosphorylation of a membrane-associated 80-kD protein. J Cell Biol 132(4):727–740PubMedCrossRefGoogle Scholar
  112. Yan Q, Matheson C, Sun J, Radeke MJ, Feinstein SC, Miller JA (1994) Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression. Exp Neurol 127(1):23–36. doi: 10.1006/exnr.1994.1076 PubMedCrossRefGoogle Scholar
  113. Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127(11):2367–2382PubMedGoogle Scholar
  114. Zhang PB, Liu Y, Li J, Kang QY, Tian YF, Chen XL, Zhao JJ, Shi QD, Song TS, Qian YH (2005) Ependymal/subventricular zone cells migrate to the peri-infarct region and differentiate into neurons and astrocytes after focal cerebral ischemia in adult rats. Di Yi Jun Yi Da Xue Xue Bao 25(10):1201–1206PubMedGoogle Scholar
  115. Zhang RL, Zhang ZG, Wang Y, LeTourneau Y, Liu XS, Zhang X, Gregg SR, Wang L, Chopp M (2007) Stroke induces ependymal cell transformation into radial glia in the subventricular zone of the adult rodent brain. J Cereb Blood Flow Metab 27(6):1201–1212PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Campus de TeatinosUniversidad de MálagaMálagaSpain

Personalised recommendations