Histochemistry and Cell Biology

, Volume 137, Issue 5, pp 657–667 | Cite as

Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy

  • Olga Tapia
  • Rocío Bengoechea
  • Ana Palanca
  • Rosa Arteaga
  • J. Fernando Val-Bernal
  • Eduardo F. Tizzano
  • María T. Berciano
  • Miguel LafargaEmail author
Original Paper


Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28γ, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coilin, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.


Spinal muscular atrophy Cajal bodies “Gems” PML bodies Motor neurons Pre-mRNA splicing disease 



The authors wish to thank Saray Pereda and Raquel García-Ceballos for technical assistance. We would also like to thank Greg Matera for critical reading of this manuscript. This work was supported by the following grants: “Dirección General de Investigación” (BFU2008-00175 and BFU2011-23983), “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas” (CIBERNED; CB06/05/0037) Spain, and Instituto de Salud Carlos III, Fondo de Investigación Sanitaria (08-0729) to EFT.


  1. Alías L, Bernal S, Fuentes-Prior P, Barceló MJ, Also E, Martínez-Hernández R, Rodríguez-Alvarez FJ, Martín Y, Aller E, Grau E, Peciña A, Antiñolo G, Galán E, Rosa AL, Fernández-Burriel M, Borrego S, Millán JM, Hernández-Chico C, Baiget M, Tizzano EF (2009) Mutation update of spinal muscular atrophy in Spain: molecular characterization of 745 unrelated patients and identification of four novel mutations in the SMN1 gene. Hum Genet 125:29–39PubMedCrossRefGoogle Scholar
  2. Alías L, Bernal S, Barceló MJ, Also-Rallo E, Martínez-Hernández R, Rodríguez-Alvarez FJ, Hernández-Chico C, Baiget M, Tizzano EF (2011) Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy. Genet Test Mol Biomarkers 15:587–594PubMedCrossRefGoogle Scholar
  3. Baltanas F, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M (2011) Nucleolar disruption and Cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in Purkinje cells. Brain Pathol 21:374–388PubMedCrossRefGoogle Scholar
  4. Berciano MT, Novell M, Villagra NT, Casafont I, Bengoechea R, Val-Bernal JF, Lafarga M (2007) Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J Struct Biol 158:410–420PubMedCrossRefGoogle Scholar
  5. Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Natl Rev Mol Cell Biol 8:1006–1016CrossRefGoogle Scholar
  6. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227PubMedCrossRefGoogle Scholar
  7. Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609PubMedCrossRefGoogle Scholar
  8. Carmo-Fonseca M (2002) New clues to the function of the Cajal body. EMBO Rep 3:726–727PubMedCrossRefGoogle Scholar
  9. Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M (1999) The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol 147:715–728PubMedCrossRefGoogle Scholar
  10. Casafont I, Navascués J, Pena E, Lafarga M, Berciano MT (2006) Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5′-fluorouridine into nascent RNA. Neuroscience 140:453–462PubMedCrossRefGoogle Scholar
  11. Cauchi RJ (2010) SMN and Gemins: “we are family”…or are we? Bioessays 32:1077–1089PubMedCrossRefGoogle Scholar
  12. Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24:438–442PubMedCrossRefGoogle Scholar
  13. Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131PubMedCrossRefGoogle Scholar
  14. Cioce M, Boulon S, Matera AG, Lamond AI (2006) UV-induced fragmentation of Cajal bodies. J Cell Biol 175:401–413PubMedCrossRefGoogle Scholar
  15. Coady TH, Lorson CL (2011) SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA 2:546–564PubMedCrossRefGoogle Scholar
  16. Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214PubMedCrossRefGoogle Scholar
  17. Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3:97–110PubMedCrossRefGoogle Scholar
  18. Cuscó I, Barceló MJ, Rojas-García R, Illa I, Gámez J, Cervera C, Pou A, Izquierdo G, Baiget M, Tizzano EF (2006) SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings. J Neurol 253:21–25PubMedCrossRefGoogle Scholar
  19. Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26:963–977PubMedCrossRefGoogle Scholar
  20. Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–842PubMedCrossRefGoogle Scholar
  21. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368PubMedCrossRefGoogle Scholar
  22. Frugier T, Tiziano FD, Cifuentes-Diaz C, Miniou P, Roblot N, Dierich A, Le Meur M, Melki J (2000) Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 9:849–858PubMedCrossRefGoogle Scholar
  23. Frugier T, Nicole S, Cifuentes-Diaz C, Melki J (2002) The molecular bases of spinal muscular atrophy. Curr Opin Genet Dev 12:294–298PubMedCrossRefGoogle Scholar
  24. Gall JG (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273–300PubMedCrossRefGoogle Scholar
  25. Gavrilov DK, Shi X, Das K, Gilliam TC, Wang CH (1998) Differential SMN2 expression associated with SMA severity. Nat Genet 20:230–231PubMedCrossRefGoogle Scholar
  26. Gilder AS, Hebert M (2011) Relationship of the Cajal body to the nucleolus. In: The nucleolus. Springer, Berlin, pp 361–380Google Scholar
  27. Gilder AS, Do PM, Carrero ZI, Cosman AM, Broome HJ, Velma V, Martinez LA, Hebert MD (2011) Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 22:1070–1079PubMedCrossRefGoogle Scholar
  28. Hebert MD, Shpargel KB, Ospina JK, Tucker KE, Matera AG (2002) Coilin methylation regulates nuclear body formation. Dev Cell 3:329–337PubMedCrossRefGoogle Scholar
  29. Kolb SJ, Kissel JT (2011) Spinal muscular atrophy. Arch Neurol 68:979–984PubMedCrossRefGoogle Scholar
  30. Kwon DY, Motley WW, Fischbeck KH, Burnett BG (2011) Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum Mol Genet 20:3667–3677PubMedCrossRefGoogle Scholar
  31. Lafarga M, Berciano MT, Garcia-Segura LM, Andres MA, Carmo-Fonseca M (1998) Acute osmotic/stress stimuli induce a transient decrease of transcriptional activity in the neurosecretory neurons of supraoptic nuclei. J Neurocytol 27:205–217PubMedCrossRefGoogle Scholar
  32. Lafarga M, Berciano MT, Pena E, Mayo I, Castaño JG, Bohmann D, Rodrigues JP, Tavanez JP, Carmo-Fonseca M (2002) Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 13:2771–2782PubMedCrossRefGoogle Scholar
  33. Lafarga M, Casafont I, Bengoechea R, Tapia O, Berciano MT (2009) Cajal’s contribution to the knowledge of the neuronal cell nucleus. Chromosoma 118:437–443PubMedCrossRefGoogle Scholar
  34. Lallemand-Breitenbach V, de Thé H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661PubMedCrossRefGoogle Scholar
  35. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedCrossRefGoogle Scholar
  36. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269PubMedCrossRefGoogle Scholar
  37. Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonné R, Lührmann R (2006) Ongoing U snRNP biogenesis is required for integrity of Cajal bodies. Mol Biol Cell 17:3221–3231PubMedCrossRefGoogle Scholar
  38. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565PubMedGoogle Scholar
  39. Lorson CL, Rindt H, Shababi M (2010) Spinal muscular atrophy. Mechanisms and therapeutic strategies. Hum Mol Genet 19:R111–R118PubMedCrossRefGoogle Scholar
  40. Matera AG, Shpargel KB (2006) Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18:317–324PubMedCrossRefGoogle Scholar
  41. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220PubMedCrossRefGoogle Scholar
  42. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647PubMedCrossRefGoogle Scholar
  43. Mentis GZ, Blivis D, Liuy W, Drobac E, Crowder ME, Kong L, Alvarez FJ, Sumner CJ, O’Donovan MJ (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467PubMedCrossRefGoogle Scholar
  44. Misteli T (2008) Physiological importance of RNA and protein mobility in the cell nucleus. Histochem Cell Biol 129:5–11PubMedCrossRefGoogle Scholar
  45. Monani UR (2005) Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 48:885–896PubMedCrossRefGoogle Scholar
  46. Navascues J, Berciano MT, Tucker KE, Lafarga M, Matera AG (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112:398–409PubMedCrossRefGoogle Scholar
  47. Nizami Z, Deryusheva S, Gall JG (2010) The Cajal body and histone locus body. Cold Sring Harb Perspect Biol 2:a000653CrossRefGoogle Scholar
  48. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263PubMedCrossRefGoogle Scholar
  49. Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151:1561–1574PubMedCrossRefGoogle Scholar
  50. Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG (2007) A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 176:831–841PubMedCrossRefGoogle Scholar
  51. Renvoisé B, Khoobarry K, Gendron MC, Cibert C, Viollet L, Lefebvre S (2006) Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J Cell Sci 119:680–692PubMedCrossRefGoogle Scholar
  52. Ruggiu M, McGovern VL, Lotti F, Saieva L, Li DK, Kariya S, Monani UR, Burgues AHM, Pellizzoni L (2012) A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32:126–138PubMedCrossRefGoogle Scholar
  53. Salomoni P, Betts-Henderson J (2011) The role of PML in the nervous system. Mol Neurobiol 43:114–123PubMedCrossRefGoogle Scholar
  54. Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102:17372–17377PubMedCrossRefGoogle Scholar
  55. Smolinski DJ, Wróbel B, Noble A, Zienkiewicz A, Górska-Brylass A (2011) Periodic expression of Sm protein parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies. Histochem Cell Biol 136:527–541PubMedCrossRefGoogle Scholar
  56. Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF (2002) Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain 125:1624–1634PubMedCrossRefGoogle Scholar
  57. Soler-Botija C, Cuscó I, Caselles L, López E, Baiget M, Tizzano EF (2005) Implication of fetal SMN2 expression in type I SMA pathogenesis: protection or pathological gain of function? J Neuropathol Exp Neurol 64:215–223PubMedGoogle Scholar
  58. Stanek D, Neugebauer KM (2006) The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 115:343–354PubMedCrossRefGoogle Scholar
  59. Tapia O, Bengoechea R, Berciano MT, Lafarga M (2010) Nuclear targeting of coilin is regulated by its hypomethylation state. Chromosoma 119:527–540PubMedCrossRefGoogle Scholar
  60. Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154:293–307PubMedCrossRefGoogle Scholar
  61. Villagrá NT, Berciano J, Altable M, Navascués J, Casafont I, Lafarga M, Berciano MT (2004) PML bodies in reactive sensory ganglion neurons of the Guillain-Barré syndrome. Neurobiol Dis 16:158–168PubMedCrossRefGoogle Scholar
  62. Young PJ, Le TT, Man NT, Burghes AH, Morris GE (2000) The relationship between SMN, the spinal muscular atrophy protein, and nuclear bodies in differentiated tissues and cultured cells. Exp Cell Res 256:365–374PubMedCrossRefGoogle Scholar
  63. Young PJ, Le TT, Dunckley M, Nguyen TM, Burghes AH, Morris GE (2001) Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN. Exp Cell Res 265:252–261PubMedCrossRefGoogle Scholar
  64. Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G (2011) Structure of a key intermediate of the SMN complex reveals Gemin2′s crucial function in snRNP assembly. Cell 146:384–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Olga Tapia
    • 1
  • Rocío Bengoechea
    • 1
  • Ana Palanca
    • 1
  • Rosa Arteaga
    • 2
  • J. Fernando Val-Bernal
    • 3
  • Eduardo F. Tizzano
    • 4
  • María T. Berciano
    • 1
  • Miguel Lafarga
    • 1
    Email author
  1. 1.Departamento de Anatomía y Biología Celular, Faculty of MedicineCentro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Cantabria-IFIMAVSantanderSpain
  2. 2.Servicio de PediatríaHospital Universitario Marqués de Valdecilla, Universidad de CantabriaSantanderSpain
  3. 3.Departamento de Anatomía PatológicaHospital Universitario Marqués de Valdecilla, Universidad de CantabriaSantanderSpain
  4. 4.Servicio de GenéticaHospital de Sant Pau, Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER U-705)BarcelonaSpain

Personalised recommendations