Histochemistry and Cell Biology

, Volume 137, Issue 3, pp 339–353

Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways

  • Yehoshua Enuka
  • Israel Hanukoglu
  • Oded Edelheit
  • Hananya Vaknine
  • Aaron Hanukoglu
Original Paper

Abstract

Epithelial sodium channels (ENaCs) are located on the apical surface of cells and funnel Na+ ions from the lumen into the cell. ENaC function also regulates extracellular fluid volume as water flows across membranes accompanying Na+ ions to maintain osmolarity. To examine the sites of expression and intracellular localization of ENaC, we generated polyclonal antibodies against the extracellular domain of human α-ENaC subunit that we expressed in E. coli. Three-dimensional (3D) confocal microscopy of immunofluorescence using these antibodies for the first time revealed that ENaCs are uniformly distributed on the ciliary surface in all epithelial cells with motile cilia lining the bronchus in human lung and female reproductive tract, all along the fimbrial end of the fallopian tube, the ampulla and rare cells in the uterine glands. Quantitative analysis indicated that cilia increase cell surface area >70-fold and the amount of ENaC on cilia is >1,000-fold higher than on non-ciliated cell surface. These findings indicate that ENaC functions as a regulator of the osmolarity of the periciliary fluid bathing the cilia. In contrast to ENaC, cystic fibrosis transmembrane conductance regulator (CFTR) that channels chloride ions from the cytoplasm to the lumen is located mainly on the apical side, but not on cilia. The cilial localization of ENaC requires reevaluation of the mechanisms of action of CFTR and other modulators of ENaC function. ENaC on motile cilia should be essential for diverse functions of motile cilia, such as germ cell transport, fertilization, implantation, clearance of respiratory airways and cell migration.

Keywords

Extracellular fluid Immunohistochemistry Ion channels Lung Pseudohypoaldosteronism Tubulin Axoneme CFTR 

References

  1. Achache H, Revel A (2006) Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update 12:731–746PubMedCrossRefGoogle Scholar
  2. Antalis TM, Buzza MS, Hodge KM, Hooper JD, Netzel-Arnett S (2010) The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 428:325–346PubMedCrossRefGoogle Scholar
  3. Berdiev BK, Qadri YJ, Benos DJ (2009) Assessment of the CFTR and ENaC association. Mol Biosyst 5:123–127PubMedCrossRefGoogle Scholar
  4. Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13:836–847PubMedGoogle Scholar
  5. Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9:519–531PubMedCrossRefGoogle Scholar
  6. Boyd C, Naray-Fejes-Toth A (2007) Steroid-mediated regulation of the epithelial sodium channel subunits in mammary epithelial cells. Endocrinology 148:3958–3967PubMedCrossRefGoogle Scholar
  7. Chan LN, Tsang LL, Rowlands DK, Rochelle LG, Boucher RC, Liu CQ, Chan HC (2002) Distribution and regulation of ENaC subunit and CFTR mRNA expression in murine female reproductive tract. J Membr Biol 185:165–176PubMedCrossRefGoogle Scholar
  8. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12:248–253PubMedCrossRefGoogle Scholar
  9. Chen M, Du J, Jiang W, Zuo W, Wang F, Li M, Chan H, Zhou W (2008) Functional expression of cystic fibrosis transmembrane conductance regulator in rat oviduct epithelium. Acta Biochim Biophys Sin 40:864–872PubMedGoogle Scholar
  10. Clemetson CA, Verma UL, De Carlo SJ (1977) Secretion and reabsorption of uterine luminal fluid in rats. J Reprod Fertil 49:183–187PubMedCrossRefGoogle Scholar
  11. Crow J, Amso NN, Lewin J, Shaw RW (1994) Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum Reprod 9:2224–2233PubMedGoogle Scholar
  12. Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC (1994) Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol 127:1907–1921PubMedCrossRefGoogle Scholar
  13. Edelheit O, Hanukoglu I, Gizewska M, Kandemir N, Tenenbaum-Rakover Y, Yurdakok M, Zajaczek S, Hanukoglu A (2005) Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism. Clin Endocrinol (Oxf) 62:547–553CrossRefGoogle Scholar
  14. Edelheit O, Hanukoglu I, Shriki Y, Tfilin M, Dascal N, Gillis D, Hanukoglu A (2010) Truncated beta epithelial sodium channel (ENaC) subunits responsible for multi-system pseudohypoaldosteronism support partial activity of ENaC. J Steroid Biochem Mol Biol 119:84–88PubMedCrossRefGoogle Scholar
  15. Edelheit O, Hanukoglu I, Dascal N, Hanukoglu A (2011) Identification of the roles of conserved charged residues in the extracellular domain of an epithelial sodium channel (ENaC) subunit by alanine mutagenesis. Am J Physiol Renal Physiol 300:F887–F897PubMedCrossRefGoogle Scholar
  16. Gaillard D, Hinnrasky J, Coscoy S, Hofman P, Matthay MA, Puchelle E, Barbry P (2000) Early expression of beta- and gamma-subunits of epithelial sodium channel during human airway development. Am J Physiol Lung Cell Mol Physiol 278:L177–L184PubMedGoogle Scholar
  17. Halbert SA, Patton DL, Zarutskie PW, Soules MR (1997) Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod 12:55–58PubMedCrossRefGoogle Scholar
  18. Hanukoglu I, Hanukoglu Z (1986) Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation. Eur J Biochem 157:27–31PubMedCrossRefGoogle Scholar
  19. Hanukoglu A, Bistritzer T, Rakover Y, Mandelberg A (1994) Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cystic fibrosis. J Pediatr 125:752–755PubMedCrossRefGoogle Scholar
  20. Helve O, Janer C, Pitkanen O, Andersson S (2007) Expression of the epithelial sodium channel in airway epithelium of newborn infants depends on gestational age. Pediatrics 120:1311–1316PubMedCrossRefGoogle Scholar
  21. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543PubMedCrossRefGoogle Scholar
  22. Hu JC, Bengrine A, Lis A, Awayda MS (2009) Alternative mechanism of activation of the epithelial Na+ channel by cleavage. J Biol Chem 284:36334–36345PubMedCrossRefGoogle Scholar
  23. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC (1996) Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12:325–328PubMedCrossRefGoogle Scholar
  24. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234PubMedCrossRefGoogle Scholar
  25. Jabbour HN, Kelly RW, Fraser HM, Critchley HO (2006) Endocrine regulation of menstruation. Endocr Rev 27:17–46PubMedCrossRefGoogle Scholar
  26. Kashlan OB, Kleyman TR (2011) ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol 301:F684–F696PubMedCrossRefGoogle Scholar
  27. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR (1999) Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 341:156–162PubMedCrossRefGoogle Scholar
  28. Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284:20447–20451PubMedCrossRefGoogle Scholar
  29. Kreda SM, Gentzsch M (2011) Imaging CFTR protein localization in cultured cells and tissues. Methods Mol Biol 742:15–33PubMedCrossRefGoogle Scholar
  30. Lange K (2011) Fundamental role of microvilli in the main functions of differentiated cells: outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 226: 896–927Google Scholar
  31. Li C, Naren AP (2010) CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr Biol (Camb) 2:161–177CrossRefGoogle Scholar
  32. Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human fallopian tube cilia. Hum Reprod Update 12:363–372PubMedCrossRefGoogle Scholar
  33. Marshall WF, Kintner C (2008) Cilia orientation and the fluid mechanics of development. Curr Opin Cell Biol 20:48–52PubMedCrossRefGoogle Scholar
  34. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104:R19–R23PubMedCrossRefGoogle Scholar
  35. Myerburg MM, Harvey PR, Heidrich EM, Pilewski JM, Butterworth MB (2010) Acute regulation of the epithelial sodium channel in airway epithelia by proteases and trafficking. Am J Respir Cell Mol Biol 43:712–719PubMedCrossRefGoogle Scholar
  36. Plesec TP, Ruiz A, McMahon JT, Prayson RA (2008) Ultrastructural abnormalities of respiratory cilia: a 25-year experience. Arch Pathol Lab Med 132:1786–1791PubMedGoogle Scholar
  37. Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726PubMedCrossRefGoogle Scholar
  38. Rohatgi R, Snell WJ (2010) The ciliary membrane. Curr Opin Cell Biol 22:541–546PubMedCrossRefGoogle Scholar
  39. Rossier BC, Stutts MJ (2009) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361–379PubMedCrossRefGoogle Scholar
  40. Salleh N, Baines DL, Naftalin RJ, Milligan SR (2005) The hormonal control of uterine luminal fluid secretion and absorption. J Membr Biol 206:17–28PubMedCrossRefGoogle Scholar
  41. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400PubMedCrossRefGoogle Scholar
  42. Saxena A, Hanukoglu I, Strautnieks SS, Thompson RJ, Gardiner RM, Hanukoglu A (1998) Gene structure of the human amiloride-sensitive epithelial sodium channel beta subunit. Biochem Biophys Res Commun 252:208–213PubMedCrossRefGoogle Scholar
  43. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ (2009) Motile cilia of human airway epithelia are chemosensory. Science 325:1131–1134PubMedCrossRefGoogle Scholar
  44. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858PubMedCrossRefGoogle Scholar
  45. Song Y, Namkung W, Nielson DW, Lee JW, Finkbeiner WE, Verkman AS (2009) Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl− channel function. Am J Physiol Lung Cell Mol Physiol 297:L1131–L1140PubMedCrossRefGoogle Scholar
  46. Strautnieks SS, Thompson RJ, Hanukoglu A, Dillon MJ, Hanukoglu I, Kuhnle U, Seckl J, Gardiner RM, Chung E (1996) Localisation of pseudohypoaldosteronism genes to chromosome 16p12.2-13.11 and 12p13.1-pter by homozygosity mapping. Hum Mol Genet 5:293–299PubMedCrossRefGoogle Scholar
  47. Takahashi M, Sano T, Yamaoka K, Kamimura T, Umemoto N, Nishitani H, Yasuoka S (2001) Localization of human airway trypsin-like protease in the airway: an immunohistochemical study. Histochem Cell Biol 115:181–187PubMedGoogle Scholar
  48. Takei Y (2000) Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn J Physiol 50:171–186PubMedCrossRefGoogle Scholar
  49. Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127:591–604PubMedCrossRefGoogle Scholar
  50. Widdicombe JH (2002) Regulation of the depth and composition of airway surface liquid. J Anat 201:313–318PubMedCrossRefGoogle Scholar
  51. Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bialas NJ, Stupay RM, Chen N, Blacque OE, Yoder BK, Leroux MR (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192:1023–1041PubMedCrossRefGoogle Scholar
  52. Yang JZ, Ajonuma LC, Tsang LL, Lam SY, Rowlands DK, Ho LS, Zhou CX, Chung YW, Chan HC (2004) Differential expression and localization of CFTR and ENaC in mouse endometrium during pre-implantation. Cell Biol Int 28:433–439PubMedCrossRefGoogle Scholar
  53. Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA (2011) The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros 10(Suppl 2):S172–S182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yehoshua Enuka
    • 1
  • Israel Hanukoglu
    • 1
  • Oded Edelheit
    • 1
  • Hananya Vaknine
    • 2
  • Aaron Hanukoglu
    • 3
    • 4
  1. 1.Department of Molecular BiologyAriel University CenterArielIsrael
  2. 2.Division of PathologyE. Wolfson Medical CenterHolonIsrael
  3. 3.Department of PediatricsSackler Medical School, Tel-Aviv UniversityTel AvivIsrael
  4. 4.Division of Pediatric EndocrinologyE. Wolfson Medical CenterHolonIsrael

Personalised recommendations