Colocalization in vivo and association in vitro of perlecan and elastin

  • Anthony J. Hayes
  • Megan S. Lord
  • Susan M. Smith
  • Margaret M. Smith
  • John M. Whitelock
  • Anthony S. Weiss
  • James Melrose
Original Paper

Abstract

We have colocalized elastin and fibrillin-1 with perlecan in extracellular matrix of tensional and weight-bearing connective tissues. Elastin and fibrillin-1 were identified as prominent components of paraspinal blood vessels, and posterior longitudinal ligament in the human fetal spine and outer annulus fibrosus of the fetal intervertebral disc. We also colocalized perlecan with a synovial elastic basal lamina, where the attached synovial cells were observed to produce perlecan. Elastin, fibrillin-1 and perlecan were co-localized in the intima and media of small blood vessels in the synovium and in human fetal paraspinal blood vessels. Elastic fibers were observed at the insertion point of the anterior cruciate ligament to bone in the ovine stifle joint where they colocalized with perlecan. Elastin has not previously been reported to be spatially associated with perlecan in these tissues. Interactions between the tropoelastin and perlecan heparan sulfate chains were demonstrated using quartz crystal microbalance with dissipation solid phase binding studies. Electrostatic interactions through the heparan sulfate chains of perlecan and core protein mediated the interactions with tropoelastin, and were both important in the coacervation of tropoelastin and deposition of elastin onto perlecan immobilized on the chip surface. This may help us to understand the interactions which are expected to occur in vivo between the tropoelastin and perlecan to facilitate the deposition of elastin and formation of elastic microfibrils in situ and would be consistent with the observed distributions of these components in a number of connective tissues.

Keywords

Perlecan Elastin Heparan sulfate HS Fibrillin-1 

References

  1. Akhtar K, Broekelmann TJ, Song H, Turk J, Brett TJ, Mecham RP, Adair-Kirk TL (2011) Oxidative Modifications of the C-terminal Domain of Tropoelastin Prevent Cell Binding. J Biol Chem 286:13574–13582PubMedCrossRefGoogle Scholar
  2. Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392PubMedCrossRefGoogle Scholar
  3. Bix G, Iozzo RV (2008) Novel interactions of perlecan: Unraveling perlecan’s role in angiogenesis. Microsc Res Tech 71:339–348PubMedCrossRefGoogle Scholar
  4. Broekelmann TJ, Kozel BA, Ishibashi H, Werneck CC, Keeley FW, Zhang L, Mecham RP (2005) Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain. J Biol Chem 280:40939–40947PubMedCrossRefGoogle Scholar
  5. Brown-Augsburger P, Broekelmann T, Mecham L, Mercer R, Gibson MA, Cleary EG, Abrams WR, Rosenbloom J, Mecham RP (1994) Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J Biol Chem 269:28443–28449PubMedGoogle Scholar
  6. Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS, Shuttleworth CA, Kielty CM (2005) Fibrillin-1 interactions with heparin: implications for microfibril and elastic fiber assembly. J Biol Chem 280:30526–30537PubMedCrossRefGoogle Scholar
  7. Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR, Kielty CM (2008) Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem 283:27017–27027PubMedCrossRefGoogle Scholar
  8. Caldini EG, Caldini N, De-Pasquale V, Strocchi R, Guizzardi S, Ruggeri A, Montes GS (1990) Distribution of elastic system fibres in the rat tail tendon and its associated sheaths. Acta Anat (Basel) 139:341–348CrossRefGoogle Scholar
  9. Carta L, Wagenseil JE, Knutsen RH, Mariko B, Faury G, Davis EC, Starcher B, Mecham RP, Ramirez F (2009) Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol 29:2083–2089PubMedCrossRefGoogle Scholar
  10. Cetta G, Tenni R, Zanaboni G, De Luca G, Ippolito E, De Martino C, Castellani AA (1982) Biochemical and morphological modifications in rabbit Achilles tendon during maturation and ageing. Biochem J 204:61–67PubMedGoogle Scholar
  11. Clarke AW, Wise SG, Cain SA, Kielty CM, Weiss AS (2005) Coacervation is promoted by molecular interactions between the PF2 segment of fibrillin-1 and the domain 4 region of tropoelastin. Biochemistry 44:10271–10281PubMedCrossRefGoogle Scholar
  12. Clarke AW, Arnspang EC, Mithieux SM, Korkmaz E, Braet F, Weiss AS (2006) Tropoelastin massively associates during coacervation to form quantized protein spheres. Biochemistry 45:9989–9996PubMedCrossRefGoogle Scholar
  13. Cleary EG, Sandberg LB, Jackson DS (1967) The changes in chemical composition during development of the bovine nuchal ligament. J Cell Biol 33:469–479PubMedCrossRefGoogle Scholar
  14. Costell M, Carmona R, Gustafsson E, Gonzalez-Iriarte M, Fassler R, Munoz-Chapuli R (2002) Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res 91:158–164PubMedCrossRefGoogle Scholar
  15. Couchman JR, Ljubimov AV (1989) Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies. Matrix 9:311–321PubMedGoogle Scholar
  16. Couchman JR, Caterson B, Christner JE, Baker JR (1984) Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307:650–652PubMedCrossRefGoogle Scholar
  17. Czirok A, Zach J, Kozel BA, Mecham RP, Davis EC, Rongish BJ (2006) Elastic fiber macro-assembly is a hierarchical, cell motion-mediated process. J Cell Physiol 207:97–106PubMedCrossRefGoogle Scholar
  18. de Carvalho HF, Lino Neto J, Taboga SR (1994) Microfibrils: neglected components of pressure-bearing tendons. Ann Anat 176:155–159PubMedGoogle Scholar
  19. Dodge GR, Boesler EW, Jimenez SA (1995) Expression of the basement membrane heparan sulfate proteoglycan (perlecan) in human synovium and in cultured human synovial cells. Lab Invest 73:649–657PubMedGoogle Scholar
  20. Fuki IV, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275:25742–25750PubMedCrossRefGoogle Scholar
  21. Fukuda Y, Ferrans VJ, Crystal RG (1984) Development of elastic fibers of nuchal ligament, aorta, and lung of fetal and postnatal sheep: an ultrastructural and electron microscopic immunohistochemical study. Am J Anat 170:597–629PubMedCrossRefGoogle Scholar
  22. Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM, Quaglino D, Mithieux S, Weiss AS, Pasquali Ronchetti I (2005) Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 24:15–25PubMedCrossRefGoogle Scholar
  23. Greenlee TK Jr, Pike D (1971) Studies of tendon healing in the rat: remodeling of the distal stump after severance. Plast Reconstr Surg 48:260–270PubMedCrossRefGoogle Scholar
  24. Grosso LE, Scott M (1993) Peptide sequences selected by BA4, a tropoelastin-specific monoclonal antibody, are ligands for the 67-kilodalton bovine elastin receptor. Biochemistry 32:13369–13374PubMedCrossRefGoogle Scholar
  25. Hayes AJ, Smith SM, Gibson MA, Melrose J (2011) Comparative immunolocalisation of the elastin fibre associated proteins fibrillin-1, LTBP2 and MAGP-1 with components of the collagenous and proteoglycan matrix of the foetal human IVD. Spine (Phila Pa 1976)Google Scholar
  26. Henderson M, Polewski R, Fanning JC, Gibson MA (1996) Microfibril-associated glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament structure for fibrillin-containing microfibrils as visualized by the rotary shadowing technique. J Histochem Cytochem 44:1389–1397PubMedCrossRefGoogle Scholar
  27. Hirani R, Hanssen E, Gibson MA (2007) LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol 26:213–223PubMedCrossRefGoogle Scholar
  28. Horiguchi Y, Couchman JR, Ljubimov AV, Yamasaki H, Fine JD (1989) Distribution, ultrastructural localization, and ontogeny of the core protein of a heparan sulfate proteoglycan in human skin and other basement membranes. J Histochem Cytochem 37:961–970PubMedCrossRefGoogle Scholar
  29. Hubmacher D, Tiedemann K, Reinhardt DP (2006) Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol 75:93–123PubMedCrossRefGoogle Scholar
  30. Iozzo RV (1994) Perlecan: a gem of a proteoglycan. Matrix Biol 14:203–208PubMedCrossRefGoogle Scholar
  31. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652PubMedCrossRefGoogle Scholar
  32. Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6:646–656PubMedCrossRefGoogle Scholar
  33. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355PubMedGoogle Scholar
  34. Iozzo RV, Cohen IR, Grassel S, Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302(Pt 3):625–639PubMedGoogle Scholar
  35. Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C (1980) Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages. J Bone Joint Surg Am 62:583–598PubMedGoogle Scholar
  36. Jordan CD, Charbonneau NL, Sakai LY (2006) Fibrillin microfibrils: connective tissue pathways that regulate shape and signaling. J Musculoskelet Neuronal Interact 6:366–367PubMedGoogle Scholar
  37. Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ, Handford PA (2007) alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem 282:6743–6751PubMedCrossRefGoogle Scholar
  38. Jovanovic J, Iqbal S, Jensen S, Mardon H, Handford P (2008) Fibrillin-integrin interactions in health and disease. Biochem Soc Trans 36:257–262PubMedCrossRefGoogle Scholar
  39. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320PubMedCrossRefGoogle Scholar
  40. Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA (2002a) Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond B Biol Sci 357:207–217PubMedCrossRefGoogle Scholar
  41. Kielty CM, Sherratt MJ, Shuttleworth CA (2002b) Elastic fibres. J Cell Sci 115:2817–2828PubMedGoogle Scholar
  42. Kielty CM, Wess TJ, Haston L, Ashworth JL, Sherratt MJ, Shuttleworth CA (2002c) Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil 23:581–596PubMedCrossRefGoogle Scholar
  43. Kielty CM, Sherratt MJ, Marson A, Baldock C (2005) Fibrillin microfibrils. Adv Protein Chem 70:405–436PubMedCrossRefGoogle Scholar
  44. Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA (2007) Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc Lond B Biol Sci 362:1293–1312PubMedCrossRefGoogle Scholar
  45. Knox S, Melrose J, Whitelock J (2001) Electrophoretic, biosensor, and bioactivity analyses of perlecans of different cellular origins. Proteomics 1:1534–1541PubMedCrossRefGoogle Scholar
  46. Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, Yarmush ML (2011) Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A 108:1034–1039PubMedCrossRefGoogle Scholar
  47. Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC, Knutsen RH, Wagenseil JE, Levy MA, Mecham RP (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207:87–96PubMedCrossRefGoogle Scholar
  48. Lim DW, Nettles DL, Setton LA, Chilkoti A (2008) In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 9:222–230PubMedCrossRefGoogle Scholar
  49. Ljubimov AV, Bartek J, Couchman JR, Kapuller LL, Veselov VV, Kovarik J, Perevoshchikov AG, Krutovskikh VA (1992) Distribution of individual components of basement membrane in human colon polyps and adenocarcinomas as revealed by monoclonal antibodies. Int J Cancer 50:562–566PubMedCrossRefGoogle Scholar
  50. Maier A, McDaniels CN, Mayne R (1994) Fibrillin and elastin networks in extrafusal tissue and muscle spindles of bovine extraocular muscles. Invest Ophthalmol Vis Sci 35:3103–3110PubMedGoogle Scholar
  51. Mariko B, Ghandour Z, Raveaud S, Quentin M, Usson Y, Verdetti J, Huber P, Kielty C, Faury G (2010) Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol 299:C977–C987PubMedCrossRefGoogle Scholar
  52. Mariko B, Pezet M, Escoubet B, Bouillot S, Andrieu JP, Starcher B, Quaglino D, Jacob MP, Huber P, Ramirez F, Faury G (2011) Fibrillin-1 genetic deficiency leads to pathological ageing of arteries in mice. J Pathol 224:33–44PubMedCrossRefGoogle Scholar
  53. Martin SL, Vrhovski B, Weiss AS (1995) Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene 154:159–166PubMedCrossRefGoogle Scholar
  54. McGowan SE, Holmes AJ, Mecham RP, Ritty TM (2008) Arg-Gly-Asp-containing domains of fibrillins-1 and -2 distinctly regulate lung fibroblast migration. Am J Respir Cell Mol Biol 38:435–445PubMedCrossRefGoogle Scholar
  55. Melrose J, Smith S, Ghosh P (2004) Histological and immunohistological studies on cartilage. Methods Mol Med 101:39–63PubMedGoogle Scholar
  56. Melrose J, Smith S, Cake M, Read R, Whitelock J (2005a) Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol 123:561–571PubMedCrossRefGoogle Scholar
  57. Melrose J, Smith S, Cake M, Read R, Whitelock J (2005b) Spatial and temporal immunolocalisation of perlecan in the ovine meniscus. Histochem Cell Biol 124:225–235PubMedCrossRefGoogle Scholar
  58. Melrose J, Roughley P, Knox S, Smith S, Lord M, Whitelock J (2006) The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J Biol Chem 281:36905–36914PubMedCrossRefGoogle Scholar
  59. Melrose J, Hayes AJ, Whitelock JM, Little CB (2008a) Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 30:457–469PubMedCrossRefGoogle Scholar
  60. Melrose J, Smith SM, Smith MM, Little CB (2008b) The use of Histochoice for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotech Histochem 83:47–53PubMedCrossRefGoogle Scholar
  61. Midwood KS, Schwarzbauer JE (2002) Elastic fibers: building bridges between cells and their matrix. Curr Biol 12:R279–R281PubMedCrossRefGoogle Scholar
  62. Montes GS (1996) Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int 20:15–27PubMedCrossRefGoogle Scholar
  63. Murdoch AD, Iozzo RV (1993) Perlecan: the multidomain heparan sulphate proteoglycan of basement membrane and extracellular matrix. Virchows Arch A Pathol Anat Histopathol 423:237–242PubMedCrossRefGoogle Scholar
  64. Murdoch AD, Liu B, Schwarting R, Tuan RS, Iozzo RV (1994) Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem 42:239–249PubMedCrossRefGoogle Scholar
  65. Nagaoka D, Tsukise A, Meyer W (2001) Ultracytochemistry of glycosaminoglycans in the canine knee synovium. Ann Anat 183:229–236PubMedCrossRefGoogle Scholar
  66. Pillarisetti S (2000) Lipoprotein modulation of subendothelial heparan sulfate proteoglycans (perlecan) and atherogenicity. Trends Cardiovasc Med 10:60–65PubMedCrossRefGoogle Scholar
  67. Ramirez F, Dietz HC (2007) Fibrillin-rich microfibrils: structural determinants of morphogenetic and homeostatic events. J Cell Physiol 213:326–330PubMedCrossRefGoogle Scholar
  68. Ramirez F, Dietz HC (2009) Extracellular microfibrils in vertebrate development and disease processes. J Biol Chem 284:14677–14681PubMedCrossRefGoogle Scholar
  69. Ramirez F, Sakai LY, Rifkin DB, Dietz HC (2007) Extracellular microfibrils in development and disease. Cell Mol Life Sci 64:2437–2446PubMedCrossRefGoogle Scholar
  70. Ramirez F, Carta L, Lee-Arteaga S, Liu C, Nistala H, Smaldone S (2008) Fibrillin-rich microfibrils: structural and instructive determinants of mammalian development and physiology. Connect Tissue Res 49:1–6PubMedCrossRefGoogle Scholar
  71. Ritty TM, Ditsios K, Starcher BC (2002) Distribution of the elastic fiber and associated proteins in flexor tendon reflects function. Anat Rec 268:430–440PubMedCrossRefGoogle Scholar
  72. Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218PubMedGoogle Scholar
  73. Rossi A, Gabbrielli E, Villano M, Messina M, Ferrara F, Weber E (2010) Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis. J Anat 217:705–714PubMedCrossRefGoogle Scholar
  74. Sasaki T, Gohring W, Miosge N, Abrams WR, Rosenbloom J, Timpl R (1999) Tropoelastin binding to fibulins, nidogen-2 and other extracellular matrix proteins. FEBS Lett 460:280–284PubMedCrossRefGoogle Scholar
  75. Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJ, Shuttleworth CA, Wess TJ, Kielty CM (2003) Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 332:183–193PubMedCrossRefGoogle Scholar
  76. Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, Kielty CM (2006) Cell-matrix biology in vascular tissue engineering. J Anat 209:495–502PubMedCrossRefGoogle Scholar
  77. Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042PubMedCrossRefGoogle Scholar
  78. Tiedemann K, Sasaki T, Gustafsson E, Gohring W, Batge B, Notbohm H, Timpl R, Wedel T, Schlotzer-Schrehardt U, Reinhardt DP (2005) Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem 280:11404–11412PubMedCrossRefGoogle Scholar
  79. Toonkool P, Regan DG, Kuchel PW, Morris MB, Weiss AS (2001) Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracentrifuge and pulsed field-gradient spin-echo NMR studies. J Biol Chem 276:28042–28050PubMedCrossRefGoogle Scholar
  80. Tsuruga E, Sato A, Ueki T, Nakashima K, Nakatomi Y, Ishikawa H, Yajima T, Sawa Y (2009) Integrin alphavbeta3 regulates microfibril assembly in human periodontal ligament cells. Tissue Cell 41:85–89PubMedCrossRefGoogle Scholar
  81. Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta 59:391–396CrossRefGoogle Scholar
  82. Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 81:229–240PubMedCrossRefGoogle Scholar
  83. Whitelock JM (2002) Purification of perlecan from endothelial cells. In Proteoglycan Protocols: current methods and applications Humana Press, TotowaGoogle Scholar
  84. Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105:2745–2764PubMedCrossRefGoogle Scholar
  85. Whitelock JM, Graham LD, Melrose J, Murdoch AD, Iozzo RV, Underwood PA (1999) Human perlecan immunopurified from different endothelial cell sources has different adhesive properties for vascular cells. Matrix Biol 18:163–178PubMedCrossRefGoogle Scholar
  86. Whitelock JM, Melrose J, Iozzo RV (2008) Diverse cell signaling events modulated by perlecan. Biochemistry 47:11174–11183PubMedCrossRefGoogle Scholar
  87. Williamson MR, Shuttleworth A, Canfield AE, Black RA, Kielty CM (2007) The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment. Biomaterials 28:5307–5318PubMedCrossRefGoogle Scholar
  88. Wise SG, Weiss AS (2009) Tropoelastin. Int J Biochem Cell Biol 41:494–497PubMedCrossRefGoogle Scholar
  89. Wrenn DS, Griffin GL, Senior RM, Mecham RP (1986) Characterization of biologically active domains on elastin: identification of a monoclonal antibody to a cell recognition site. Biochemistry 25:5172–5176PubMedCrossRefGoogle Scholar
  90. Wu WJ, Vrhovski B, Weiss AS (1999) Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J Biol Chem 274:21719–21724PubMedCrossRefGoogle Scholar
  91. Yamazaki M, Cheng J, Hao N, Takagi R, Jimi S, Itabe H, Saku T (2004) Basement membrane-type heparan sulfate proteoglycan (perlecan) and low-density lipoprotein (LDL) are co-localized in granulation tissues: a possible pathogenesis of cholesterol granulomas in jaw cysts. J Oral Pathol Med 33:177–184PubMedCrossRefGoogle Scholar
  92. Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin-1, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 124:855–863PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anthony J. Hayes
    • 1
  • Megan S. Lord
    • 2
  • Susan M. Smith
    • 3
  • Margaret M. Smith
    • 3
  • John M. Whitelock
    • 2
  • Anthony S. Weiss
    • 4
  • James Melrose
    • 3
  1. 1.BioImaging Unit, Cardiff School of BiosciencesUniversity of CardiffCardiffUK
  2. 2.Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyAustralia
  3. 3.Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical ResearchUniversity of Sydney, The Royal North Shore HospitalSt. LeonardsAustralia
  4. 4.School of Molecular BioscienceUniversity of SydneyNSWAustralia

Personalised recommendations