Advertisement

Histochemistry and Cell Biology

, 136:321 | Cite as

Peculiarities of the extracellular matrix in the interstitium of the renal stem/progenitor cell niche

  • Will W. MinuthEmail author
  • Lucia Denk
  • Christian Miess
  • Anne Glashauser
Original Paper

Abstract

The development of the nephron is piloted by interactions between epithelial and surrounding mesenchymal stem/progenitor cells. Data show that an astonishingly wide interstitial space separates both kinds of stem/progenitor cells. A simple contrasting procedure was applied to visualize features that keep renal epithelial and mesenchymal stem/progenitor cells in distance. The kidney of neonatal rabbits was fixed in solutions containing glutaraldehyde (GA) in combination with alcian blue, lanthanum, ruthenium red, or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the tissue was exactly orientated along the axis of collecting ducts. Fixation with GA or in combination with alcian blue or lanthanum revealed an inconspicuous interstitial space. In contrast, fixation with GA containing ruthenium red exhibits strands of extracellular matrix lining from epithelial stem/progenitor cells through the interstitium up to the surface of mesenchymal stem/progenitor cells. Fixation with GA containing tannic acid shows that the basal lamina of epithelial stem/progenitor cells, the adjacent interstitial space and also the surface of mesenchymal stem/progenitor cells are connected over a net of extracellular matrix. The applied technique appears to be a suitable method to illuminate the interstitium in stem/progenitor cell niches of specialized tissues, the microenvironment of tumors and extension of degeneration.

Keywords

Kidney Stem/progenitor cell niche Extracellular matrix Interstitium Electron microscopy 

References

  1. Abe K, Ozono Y, Miyazaki M, Koji T, Shioshita K, Furusu A, Tsukasaki S, Matsuya F, Hosokawa N, Harada T, Taguchi T, Nagata K, Kohno S (2000) Interstitial expression of heat shock protein 47 and alpha-smooth muscle actin in renal allograft failure. Nephrol Dial Transplant 15(4):529–535PubMedCrossRefGoogle Scholar
  2. Al-Awqati Q, Oliver JA (2006) The kidney papilla is a stem cells niche. Stem Cell Rev 2(3):181–184PubMedCrossRefGoogle Scholar
  3. Asanuma H, Meldrum DR, Meldrum KK (2010) Therapeutic applications of mesenchymal stem cells to repair kidney injury. J Urol 184(1):26–33PubMedCrossRefGoogle Scholar
  4. Barasch J, Yang J, Qiao J, Tempst P, Erdjument-Bromage H, Leung W, Oliver JA (1999) Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest 103(9):1299–1307PubMedCrossRefGoogle Scholar
  5. Benigni A, Morigi M, Remuzzi G (2010) Kidney regeneration. Lancet 375(9722):1310–1317PubMedCrossRefGoogle Scholar
  6. Blattmann A, Denk L, Strehl R, Castrop H, Minuth WW (2008) The formation of pores in the basal lamina of regenerated renal tubules. Biomaterials 29(18):2749–2756PubMedCrossRefGoogle Scholar
  7. Brandenberger R (2001) Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J Cell Biol 154(2):447–458PubMedCrossRefGoogle Scholar
  8. Bullock SL, Johnson TM, Bao Q, Hughes RC, Winyard PJ, Woolf AS (2001) Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol 12(3):515–523PubMedGoogle Scholar
  9. Burst VR, Gillis M, Pütsch F, Herzog R, Fischer JH, Heid P, Müller-Ehmsen J, Schenk K, Fries JWU, Baldamus CA, Benzing T (2010) Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol 114(3):e107–e116PubMedCrossRefGoogle Scholar
  10. Chan SK, Riley PR, Price KL, McElduff F, Winyard PJ, Welham SJM, Woolf AS, Long DA (2010) Corticosteroid-induced kidney dysmorphogenesis is associated with deregulated expression of known cystogenic molecules, as well as Indian hedgehog. Am J Physiol Renal Physiol 29(2):F346–F356CrossRefGoogle Scholar
  11. Charbonneau NL, Jordan CD, Keene DR, Lee-Arteage S, Dietz HC, Rifkin DB, Ramirez F, Sakai LY (2010) Microfibril structure masks fibrillin-2 in postnatal tissues. J Biol Chem 285(26):20242–20251PubMedCrossRefGoogle Scholar
  12. Cullen-McEwen LA, Caruana G, Bertram JF (2005) The where, what and why of the developing renal stroma. Nephron Exp Nephrol 99(1):e1–e8PubMedCrossRefGoogle Scholar
  13. Davies JA (2002) Morphogenesis of the metanephric kidney. ScientificWorldJournal 28(2):1937–1950CrossRefGoogle Scholar
  14. Debiec H, Christensen EI, Ronco PM (1998) The cell adhesion molecule L1 is developmentally regulated in the renal epithelium and is involved in kidney branching morphogenesis. J Cell Biol 143(7):2067–2079PubMedCrossRefGoogle Scholar
  15. Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136(23):3863–3874PubMedCrossRefGoogle Scholar
  16. Ekblom P (1992) Renal development. In The kidney: Physiology and pathophysiology, Raven Press Ltd., pp 475–501Google Scholar
  17. Ekblom P, Weller A (1991) Ontogeny of tubulointerstitial cells. Kidney Int 39(3):394–400PubMedCrossRefGoogle Scholar
  18. Fleischmajer R, Jacobs L, Perlish JS, Katchen B, Schwartz E, Timpl R (1992) Immunochemical analysis of human kidney reticulin. Am J Pathol 140(5):1225–1235PubMedGoogle Scholar
  19. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286PubMedCrossRefGoogle Scholar
  20. Grande MT, López-Novoa JM (2009) Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5(6):319–328PubMedCrossRefGoogle Scholar
  21. Grande MT, Pérez-Barriocanal F, López-Novoa JM (2010) Role of inflammation in túbulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 22(7):19CrossRefGoogle Scholar
  22. Guarino M, Tosoni A, Nebuloni M (2009) Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Hum Pathol 40(10):1365–1376PubMedCrossRefGoogle Scholar
  23. Hasko JA, Richardson GP (1988) The ultrastructural organization and properties of the mouse tectorial membrane matrix. Hear Res 35(1):21–38PubMedCrossRefGoogle Scholar
  24. Hudkins KL, Giachelli CM, Cui Y, Couser WG, Johnson RJ, Alpers CE (1999) Osteopontin expression in fetal and mature human kidney. J Am Soc Nephrol 10(3):444–457PubMedGoogle Scholar
  25. Humphreys BD, Duffield JS, Bonventre JV (2006) Renal stem cells in recovery from acute kidney injury. Minerva Urol Nefrol 58(4):13–21PubMedGoogle Scholar
  26. Ikeya M, Fukushima K, Kawada M, Onishi S, Furuta Y, Yonemura S, Kitamura T, Nosaka T, Sasai Y (2010) Cv2, functioning as a pro-BMP factor via twisted gastrulation, is required for early development of nephron precursors. Dev Biol 337(2):405–414PubMedCrossRefGoogle Scholar
  27. Iwatani H, Imai E (2010) Kidney repair using stem cells: myth or reality as a therapeutic option? J Nephrol 2:143–146Google Scholar
  28. Kaissling B, Le Hir M (2008) The renal cortical interstitium: morphological and functional aspects. Histochem Cell Biol 23(2):247–262CrossRefGoogle Scholar
  29. Kim S, Min W-K, Chun S, Lee W, Chung H-J, Choi SJ, Yang SE, Yang YS, Yoo J-I (2010) Protein expression profiles during osteogenic differentiation of mesenchymal stem cells derived from human umbilical cord blood. Tohoku J Exp Med 221(2):141–150PubMedCrossRefGoogle Scholar
  30. Kloth S, Ebenbeck C, Monzer J, de Vries U, Minuth WW (1997) Three-dimensional organization of the developing vasculature of the kidney. Cell Tissue Res 287(1):193–201PubMedCrossRefGoogle Scholar
  31. Lemley KV, Kriz W (1991) Anatomy of the renal interstitium. Kidney Int 39(3):370–381PubMedCrossRefGoogle Scholar
  32. Lim BJ, Hong SW, Jeong HJ (2009) Renal tubular expression of Toll-like receptor 4 in cyclosporine nephrotoxicity. APMIS 117(8):583–591PubMedCrossRefGoogle Scholar
  33. Lusis M, Li J, Ineson J, Christensen ME, Rice A, Little MH (2010) Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Res 5(1):23–39PubMedCrossRefGoogle Scholar
  34. Maric C, Ryan GB, Alcorn D (1997) Embryonic and postnatal development of the rat renal interstitium. Anat Embryol (Berl) 195(6):503–514CrossRefGoogle Scholar
  35. Michos O (2009) Kidney development: from ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev 19(5):484–490PubMedCrossRefGoogle Scholar
  36. Miess C, Glashauser A, Denk L, de Vries U, Minuth WW (2010) The interface between generating renal tubules and a polyester fleece in comparison to the interstitium of the developing kidney. Ann Biomed Eng 38(6):2197–2209PubMedCrossRefGoogle Scholar
  37. Minuth WW, Schumacher K (2003) From the renal stem cell niche to functional tubule. Med Klin 98(SupllI):31–35Google Scholar
  38. Minuth WW, Denk L, Meese C, Rachel R, Roessger A (2009) Ultrastructural insights in the interface between generated renal tubules and a polyester interstitium. Langmuir 25(8):4621–4627PubMedCrossRefGoogle Scholar
  39. Minuth WW, Denk L, Glashauser A (2010a) Towards a guided regeneration of renal tubules at a polyester interstitium. Materials 3(4):2369–2392CrossRefGoogle Scholar
  40. Minuth WW, Denk L, Glashauser A (2010b) Cell and drug delivery therapeutics for controlled renal parenchyma regeneration. Adv Drug Deliv Rev 62(7–8):841–854PubMedCrossRefGoogle Scholar
  41. Mounier F, Foidart JM, Gubler MC (1986) Distribution of extracellular matrix glycoproteins during normal development of human kidney. An immunohistochemical study. Lab Invest 54(4):394–401PubMedGoogle Scholar
  42. Nigam SK, Shah MM (2009) How does the ureteric bud branch? J Am Soc Nephrol 20(7):1465–1469PubMedCrossRefGoogle Scholar
  43. Nishinakamura R (2008) Stem cells in the embryonic kidney. Kidney Int 73:913–917PubMedCrossRefGoogle Scholar
  44. Oxburgh L, Brown AC, Fetting J, Hill B (2011) BMP signalling in the nephron progenitor niche. Pediatr Nephrol. doi: 10.1007/s00467-011-1819-8
  45. Perin L, Giuliani S, Sedrakyan S, DA Sacco S, De Filippo RE (2008) Stem cell and regenerative science applications in the development of bioengineering of renal tissue. Pediatr Res 63(5):467–471PubMedCrossRefGoogle Scholar
  46. Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO (2001) TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128(7):1045–1057PubMedGoogle Scholar
  47. Pohl M, Sakurai H, Stuart RO, Nigam SK (2000) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224(2):312–325PubMedCrossRefGoogle Scholar
  48. Rodríguez-Iturbe B, García García G (2010) The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clinical Practice 116(2):c81–c88PubMedCrossRefGoogle Scholar
  49. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347PubMedCrossRefGoogle Scholar
  50. Sariola H (2002) Nephron induction revisited: from caps to condensates. Curr Opin Nephrol Hypertens 11(1):17–21PubMedCrossRefGoogle Scholar
  51. Saxén L, Lehtonen E (1987) Embryonic kidney in organ culture. Differentiation 36(1):2–11PubMedCrossRefGoogle Scholar
  52. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441(7097):1075–1079PubMedCrossRefGoogle Scholar
  53. Schéele S, Nyström A, Durbeej M, Talts JF, Ekblom M, Ekblom P (2007) Laminin isoforms in development and disease. J Mol Med 85(8):825–836PubMedCrossRefGoogle Scholar
  54. Schumacher K, Strehl R, de Vries U, Groene HJ, Minuth WW (2002a) SBA-positive fibers between the CD ampulla, mesenchyme, and renal capsule. J Am Soc Nephrol 13(10):2446–2453PubMedCrossRefGoogle Scholar
  55. Schumacher K, Strehl R, Minuth WW (2002b) Detection of glycosylated sites in embryonic rabbit kidney by lectin histochemistry. Histochem Cell Biol 118:79–87PubMedGoogle Scholar
  56. Schumacher K, Strehl R, Minuth WW (2003) Characterization of micro-fibers at the interface between the renal collecting duct ampulla and the cap condensate. Nephron Exp Nephrol 95:e43–e54PubMedCrossRefGoogle Scholar
  57. Schumacher K, Klar J, Wagner C, Minuth WW (2005) Temporal-spatial co-localisation of tissue transglutaminase (Tgase2) and matrix metalloproteinase-9 (MMP-9) with SBA-positive micro-fibres in the embryonic kidney cortex. Cell Tissue Res 319(3):491–500PubMedCrossRefGoogle Scholar
  58. Shaw L, Johnson PA, Kimber SJ (2010) Gene expression profiling of the developing mouse kidney and embryo. In Vitro Cell Dev Biol Anim 46(2):155–165PubMedCrossRefGoogle Scholar
  59. Strehl R, Minuth WW (2001a) Nephron induction—the epithelial mesenchymal interface revisited. Pediatr Nephrol 16(1):38–40PubMedCrossRefGoogle Scholar
  60. Strehl R, Minuth WW (2001b) Partial identification of the mab (CD) Amp1 antigen at the epithelial-mesenchymal interface in the developing kidney. Histochem Cell Biol 116(5):389–396PubMedCrossRefGoogle Scholar
  61. Strehl R, Kloth S, Aigner J, Steiner P, Minuth WW (1997) PCDAmp1, a new antigen at the interface of the embryonic collecting duct epithelium and the nephrogenic mesenchyme. Kidney Int 52(6):1469–1477PubMedCrossRefGoogle Scholar
  62. Strehl R, Trautner V, Kloth S, Minuth WW (1999) Existence of a dense reticular meshwork surrounding the nephron inducer in neonatal rabbit kidney. Cell Tissue Res 298(3):539–548PubMedCrossRefGoogle Scholar
  63. Stroo I, Stokman G, Teske GJD, Florquin S, Leemans JC (2009) Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis. Nephrol Dial Transplant 24(7):2082–2088PubMedCrossRefGoogle Scholar
  64. Sundelin B, Bohman SO (1990) Postnatal development of the interstitial tissue of the rat kidney. Anat Embryol (Berl) 182(4):307–317CrossRefGoogle Scholar
  65. Tanaka T, Nangaku M (2010) The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease. Curr Opin Nephrol Hypertens 19(1):43–50PubMedCrossRefGoogle Scholar
  66. Vidyasagar A, Reese S, Acun Z, Hullett D, Djamali A (2008) HSP27 is involved in the pathogenesis of kidney tubulointerstitial fibrosis. Am J Physiol Renal Physiol 295(3):F707–F716PubMedCrossRefGoogle Scholar
  67. Vigneau C, Zheng F, Polgar K, Wilson PD, Striker G (2006) Stem cells and kidney injury. Curr Opin Nephrol Hypertens 15(3):238–244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Will W. Minuth
    • 1
    Email author
  • Lucia Denk
    • 1
  • Christian Miess
    • 1
  • Anne Glashauser
    • 1
  1. 1.Department of Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany

Personalised recommendations